Uncertainty Quantification of Fiber Orientation and Epicardial Activation.

Computing in cardiology Pub Date : 2023-10-01 Epub Date: 2023-12-26 DOI:10.22489/cinc.2023.137
Lindsay C Rupp, Anna Busatto, Jake A Bergquist, Karli Gillette, Akil Narayan, Gernot Plank, Rob S MacLeod
{"title":"Uncertainty Quantification of Fiber Orientation and Epicardial Activation.","authors":"Lindsay C Rupp, Anna Busatto, Jake A Bergquist, Karli Gillette, Akil Narayan, Gernot Plank, Rob S MacLeod","doi":"10.22489/cinc.2023.137","DOIUrl":null,"url":null,"abstract":"<p><p>Predictive models and simulations of cardiac function require accurate representations of anatomy, often to the scale of local myocardial fiber structure. However, acquiring this information in a patient-specific manner is challenging. Moreover, the impact of physiological variability in fiber orientation on simulations of cardiac activation is poorly understood. To explore these effects, we implemented bi-ventricular activation simulations using rule-based fiber algorithms and robust uncertainty quantification techniques to generate detailed maps of model variability. Specifically, we utilized polynomial chaos expansion, enabling efficient exploration with reduced computational demand through an emulator function approximating the underlying forward model. Our study focused on examining the epicardial activation sequences of the heart in response to six stimuli locations and five metrics of activation. Our findings revealed that physiological variability in fiber orientation does not significantly affect the location of activation features, but it does impact the overall spread of activation. We observed low variability near the earliest activation sites, but high variability across the rest of the epicardial surface. We conclude that the level of accuracy of myocardial fiber orientation required for simulation depends on the specific goals of the model and the related research or clinical goals.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"50 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2023.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predictive models and simulations of cardiac function require accurate representations of anatomy, often to the scale of local myocardial fiber structure. However, acquiring this information in a patient-specific manner is challenging. Moreover, the impact of physiological variability in fiber orientation on simulations of cardiac activation is poorly understood. To explore these effects, we implemented bi-ventricular activation simulations using rule-based fiber algorithms and robust uncertainty quantification techniques to generate detailed maps of model variability. Specifically, we utilized polynomial chaos expansion, enabling efficient exploration with reduced computational demand through an emulator function approximating the underlying forward model. Our study focused on examining the epicardial activation sequences of the heart in response to six stimuli locations and five metrics of activation. Our findings revealed that physiological variability in fiber orientation does not significantly affect the location of activation features, but it does impact the overall spread of activation. We observed low variability near the earliest activation sites, but high variability across the rest of the epicardial surface. We conclude that the level of accuracy of myocardial fiber orientation required for simulation depends on the specific goals of the model and the related research or clinical goals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤维方向和心外膜激活的不确定性量化。
心脏功能的预测模型和模拟需要精确的解剖结构,通常是局部心肌纤维结构的比例。然而,以患者特异性的方式获取这些信息具有挑战性。此外,人们对纤维方向的生理变化对心脏激活模拟的影响也知之甚少。为了探索这些影响,我们使用基于规则的纤维算法和稳健的不确定性量化技术实施了双心室激活模拟,以生成模型变异性的详细地图。具体来说,我们利用多项式混沌扩展,通过近似基础前向模型的仿真器函数,在减少计算需求的同时实现了高效探索。我们的研究重点是检查心脏外膜激活序列对六个刺激位置和五个激活指标的响应。我们的研究结果表明,纤维方向的生理变异不会对激活特征的位置产生显著影响,但会对激活的整体扩散产生影响。我们观察到最早激活点附近的变异性较低,但心外膜表面其他区域的变异性较高。我们的结论是,模拟所需的心肌纤维定向精确度取决于模型的具体目标以及相关的研究或临床目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation. Effects of Biventricular Pacing Locations on Anti-Tachycardia Pacing Success in a Patient-Specific Model. Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms. Capturing the Influence of Conduction Velocity on Epicardial Activation Patterns Using Uncertainty Quantification. Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1