Uncertainty Quantification of the Effect of Variable Conductivity in Ventricular Fibrotic Regions on Ventricular Tachycardia.

Computing in cardiology Pub Date : 2023-10-01 Epub Date: 2023-12-26 DOI:10.22489/cinc.2023.141
Jake A Bergquist, Matthias Lange, Brian Zenger, Ben Orkild, Eric Paccione, Eugene Kwan, Bram Hunt, Jiawei Dong, Rob S MacLeod, Akil Narayan, Ravi Ranjan
{"title":"Uncertainty Quantification of the Effect of Variable Conductivity in Ventricular Fibrotic Regions on Ventricular Tachycardia.","authors":"Jake A Bergquist, Matthias Lange, Brian Zenger, Ben Orkild, Eric Paccione, Eugene Kwan, Bram Hunt, Jiawei Dong, Rob S MacLeod, Akil Narayan, Ravi Ranjan","doi":"10.22489/cinc.2023.141","DOIUrl":null,"url":null,"abstract":"<p><p>Ventricular tachycardia (VT) is a life-threatening cardiac arrhythmia for which a common treatment pathway is electroanatomical mapping and ablation. Recent advances in both noninvasive ablation techniques and computational modeling have motivated the development of patient-specific computational models of VT. Such models are parameterized by a wide range of inputs, each of which is associated with an often unknown amount of error and uncertainty. Uncertainty quantification (UQ) is a technique to assess how variability in the inputs to a model affects its outputs. UQ has seen increased attention in computational cardiology as an avenue to further improve, understand, and develop patient-specific models. In this study we applied polynomial chaos-based UQ to explore the effect of varying the tissue conductivity of fibrotic border zones in a patient-specific model on the resulting VT simulation. We found that over a range of inputs, the model was most sensitive to fibrotic sheet direction, and uncertainty in fibrotic conductivity resulted in substantial variability in the VT reentry duration and cycle length. Overall, this study paves the way for future UQ applications to improve and understand VT models.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"50 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349308/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2023.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ventricular tachycardia (VT) is a life-threatening cardiac arrhythmia for which a common treatment pathway is electroanatomical mapping and ablation. Recent advances in both noninvasive ablation techniques and computational modeling have motivated the development of patient-specific computational models of VT. Such models are parameterized by a wide range of inputs, each of which is associated with an often unknown amount of error and uncertainty. Uncertainty quantification (UQ) is a technique to assess how variability in the inputs to a model affects its outputs. UQ has seen increased attention in computational cardiology as an avenue to further improve, understand, and develop patient-specific models. In this study we applied polynomial chaos-based UQ to explore the effect of varying the tissue conductivity of fibrotic border zones in a patient-specific model on the resulting VT simulation. We found that over a range of inputs, the model was most sensitive to fibrotic sheet direction, and uncertainty in fibrotic conductivity resulted in substantial variability in the VT reentry duration and cycle length. Overall, this study paves the way for future UQ applications to improve and understand VT models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心室纤维化区域可变传导性对室性心动过速影响的不确定性量化。
室性心动过速(VT)是一种危及生命的心律失常,其常见的治疗途径是电解剖图绘制和消融。无创消融技术和计算模型的最新进展推动了针对特定患者的室性心动过速计算模型的发展。这些模型由大量输入参数构成,而每一个输入参数往往都伴随着未知的误差和不确定性。不确定性量化(UQ)是一种评估输入模型的变异性如何影响其输出结果的技术。作为进一步改进、理解和开发患者特异性模型的一种途径,不确定性量化在计算心脏病学领域受到越来越多的关注。在这项研究中,我们应用了基于多项式混沌的 UQ 来探索在患者特异性模型中改变纤维化边界区的组织电导率对 VT 模拟结果的影响。我们发现,在一定的输入范围内,模型对纤维化片方向最为敏感,而纤维化传导性的不确定性会导致 VT 再入持续时间和周期长度的大幅变化。总之,这项研究为将来应用 UQ 改进和理解 VT 模型铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation. Effects of Biventricular Pacing Locations on Anti-Tachycardia Pacing Success in a Patient-Specific Model. Deep Learning System for Left Ventricular Assist Device Candidate Assessment from Electrocardiograms. Capturing the Influence of Conduction Velocity on Epicardial Activation Patterns Using Uncertainty Quantification. Comparison of Machine Learning Detection of Low Left Ventricular Ejection Fraction Using Individual ECG Leads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1