Astrid Françoys , Haichao Li , Orly Mendoza , Kevin Dewitte , Samuel Bodé , Pascal Boeckx , Wim Cornelis , Stefaan De Neve , Steven Sleutel
{"title":"Control of landscape position on organic matter decomposition via soil moisture during a wet summer","authors":"Astrid Françoys , Haichao Li , Orly Mendoza , Kevin Dewitte , Samuel Bodé , Pascal Boeckx , Wim Cornelis , Stefaan De Neve , Steven Sleutel","doi":"10.1016/j.still.2024.106277","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainable cropland management requires preservation of soil organic matter (SOM). In spite of in depth understanding gained from ample field and laboratory studies, we have a poor understanding of landscape scale spatial variation of fresh organic matter (OM) decomposition and its conversion into soil organic carbon (SOC). Particularly, local topographic position may be expected to co-control these processes via soil hydrology. In this study, we sought to identify if such control is significant by setting up a field experiment with two contrasting positions across 10 gently sloping cropland fields covering three different soil texture groups, i.e. loamy sand, (sandy) loam and silt loam. We wanted to link OM decomposition to within-field differences in soil moisture, whilst keeping variation in other soil and management factors minimal. Specifically, mesocosms with <sup>13</sup>C enriched ryegrass (the OM source) were incorporated in the fields for ten weeks and afterwards, soil was separated into > 500 µm, 53 – 500 µm and < 53 µm sized fractions. Overall, we found that lower located positions were wetter than higher positions with average differences of 11 %, 20 % and 16 % in water-filled pore space for the loamy sand, (sandy) loam and silt loam soil, respectively. Mineralization of added OM was surprisingly independent of landscape position, even though moisture conditions appeared wetter than optimal at the low but not at the high landscape positions. Remaining ryegrass residues > 500 µm did follow local topography-driven gradients in soil moisture with higher amounts in low landscape positions. In other words, drier conditions at high landscape positions improved coarse OM decomposition, with consequently more ryegrass-carbon (C) ending up in finer soil fractions (< 500 µm). Additionally, soil texture affected decomposition of the smallest fraction (< 53 µm) with a stabilizing effect for finer-textured (silt loam) soils. We conclude that, despite significant contrasts in moisture conditions between landscape positions, within-field spatial variability of OM mineralization was overall limited during the observed wet summer period. Nevertheless, landscape position affected the quality of remnant unmineralized C, with relatively more conversion of freshly added OM into OM associated with silt and clay at the drier higher positions, potentially improving the long-term stability of SOM. Likewise observations under different weather conditions are needed to evaluate the necessity of precise modelling of local soil hydrology for predicting SOC stock evolution on the landscape scale.</p></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"244 ","pages":"Article 106277"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724002782","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainable cropland management requires preservation of soil organic matter (SOM). In spite of in depth understanding gained from ample field and laboratory studies, we have a poor understanding of landscape scale spatial variation of fresh organic matter (OM) decomposition and its conversion into soil organic carbon (SOC). Particularly, local topographic position may be expected to co-control these processes via soil hydrology. In this study, we sought to identify if such control is significant by setting up a field experiment with two contrasting positions across 10 gently sloping cropland fields covering three different soil texture groups, i.e. loamy sand, (sandy) loam and silt loam. We wanted to link OM decomposition to within-field differences in soil moisture, whilst keeping variation in other soil and management factors minimal. Specifically, mesocosms with 13C enriched ryegrass (the OM source) were incorporated in the fields for ten weeks and afterwards, soil was separated into > 500 µm, 53 – 500 µm and < 53 µm sized fractions. Overall, we found that lower located positions were wetter than higher positions with average differences of 11 %, 20 % and 16 % in water-filled pore space for the loamy sand, (sandy) loam and silt loam soil, respectively. Mineralization of added OM was surprisingly independent of landscape position, even though moisture conditions appeared wetter than optimal at the low but not at the high landscape positions. Remaining ryegrass residues > 500 µm did follow local topography-driven gradients in soil moisture with higher amounts in low landscape positions. In other words, drier conditions at high landscape positions improved coarse OM decomposition, with consequently more ryegrass-carbon (C) ending up in finer soil fractions (< 500 µm). Additionally, soil texture affected decomposition of the smallest fraction (< 53 µm) with a stabilizing effect for finer-textured (silt loam) soils. We conclude that, despite significant contrasts in moisture conditions between landscape positions, within-field spatial variability of OM mineralization was overall limited during the observed wet summer period. Nevertheless, landscape position affected the quality of remnant unmineralized C, with relatively more conversion of freshly added OM into OM associated with silt and clay at the drier higher positions, potentially improving the long-term stability of SOM. Likewise observations under different weather conditions are needed to evaluate the necessity of precise modelling of local soil hydrology for predicting SOC stock evolution on the landscape scale.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.