{"title":"Temperature and solar irradiation effects on secondary metabolism during ripening of field-grown everbearing strawberries","authors":"","doi":"10.1016/j.plaphy.2024.109081","DOIUrl":null,"url":null,"abstract":"<div><p>The garden strawberry (<em>Fragaria</em> x <em>ananassa</em> Duch.) is cultivated and consumed worldwide because of the pleasant flavor and health-promoting phytochemicals of its false fruits. Monocrop cultivars produce fully ripe strawberries in about one month post-anthesis throughout the spring, while everbearing cultivars undergo additional strawberry production in autumn. In this work, we evaluated the impact of different season-dependent environmental conditions on the ripening program of an everbearing field-gown strawberry variety from autumn 2015 to spring 2016. We combined <em>ad hoc</em> sampling and environmental data collection with LC-MS-based untargeted metabolomics to dissect the effects of cumulative temperature and solar irradiation on fruit quality parameters and secondary metabolism during ripening. Different dynamics in specific sub-groups of metabolites were observed in strawberries experiencing distinct amounts of cumulative temperature and solar irradiation during spring and autumn. The integration of statistical analyses on collected data revealed that solar irradiation mainly affected fruit fresh weight and organic acid levels, whereas temperature had a more selective effect on the accumulation of specific flavonols, anthocyanins, and soluble sugar. These findings are of suitable interest to design further approaches for the study of the complex interactions among environmental conditions and ripening in strawberries grown in a real-world scenario.</p></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824007496","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The garden strawberry (Fragaria x ananassa Duch.) is cultivated and consumed worldwide because of the pleasant flavor and health-promoting phytochemicals of its false fruits. Monocrop cultivars produce fully ripe strawberries in about one month post-anthesis throughout the spring, while everbearing cultivars undergo additional strawberry production in autumn. In this work, we evaluated the impact of different season-dependent environmental conditions on the ripening program of an everbearing field-gown strawberry variety from autumn 2015 to spring 2016. We combined ad hoc sampling and environmental data collection with LC-MS-based untargeted metabolomics to dissect the effects of cumulative temperature and solar irradiation on fruit quality parameters and secondary metabolism during ripening. Different dynamics in specific sub-groups of metabolites were observed in strawberries experiencing distinct amounts of cumulative temperature and solar irradiation during spring and autumn. The integration of statistical analyses on collected data revealed that solar irradiation mainly affected fruit fresh weight and organic acid levels, whereas temperature had a more selective effect on the accumulation of specific flavonols, anthocyanins, and soluble sugar. These findings are of suitable interest to design further approaches for the study of the complex interactions among environmental conditions and ripening in strawberries grown in a real-world scenario.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.