28 nm FDSOI embedded PCM exhibiting near zero drift at 12 K for cryogenic SNNs

Joao Henrique Quintino Palhares, Nikhil Garg, Pierre-Antoine Mouny, Yann Beilliard, J. Sandrini, F. Arnaud, Lorena Anghel, Fabien Alibart, Dominique Drouin, Philippe Galy
{"title":"28 nm FDSOI embedded PCM exhibiting near zero drift at 12 K for cryogenic SNNs","authors":"Joao Henrique Quintino Palhares, Nikhil Garg, Pierre-Antoine Mouny, Yann Beilliard, J. Sandrini, F. Arnaud, Lorena Anghel, Fabien Alibart, Dominique Drouin, Philippe Galy","doi":"10.1038/s44335-024-00008-y","DOIUrl":null,"url":null,"abstract":"Seeking to circumvent conventional computing bottlenecks, hardware alternatives, from brain-inspired designs to cryogenic quantum systems, necessitate integrating emerging non-volatile memories. Yet, the immaturity and unreliability of cryogenic-compatible memories hinder scalable computing advancements. This study characterizes 28 nm FD-SOI substrate-embedded Ge-rich Ge2Sb2Te5 phase change memories (ePCMs) down to 12 K to overcome these hurdles. It reveals that ePCMs is cryogenic compatible and can encode multiple resistance states with minimal drift, essential for advanced computing solutions. Through simulations, the ePCM’s impact on a spiking neural network (SNN) performing MNIST classification is evaluated. The SNN maintains high accuracy for extended periods of 2 years at cryogenic temperatures, while an accuracy drop of 10.8% is observed at room temperature. These results highlight the potential of multilevel ePCMs in brain-inspired cryogenic computing applications, offering a promising avenue for the evolution of unconventional computing systems.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44335-024-00008-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Unconventional Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44335-024-00008-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Seeking to circumvent conventional computing bottlenecks, hardware alternatives, from brain-inspired designs to cryogenic quantum systems, necessitate integrating emerging non-volatile memories. Yet, the immaturity and unreliability of cryogenic-compatible memories hinder scalable computing advancements. This study characterizes 28 nm FD-SOI substrate-embedded Ge-rich Ge2Sb2Te5 phase change memories (ePCMs) down to 12 K to overcome these hurdles. It reveals that ePCMs is cryogenic compatible and can encode multiple resistance states with minimal drift, essential for advanced computing solutions. Through simulations, the ePCM’s impact on a spiking neural network (SNN) performing MNIST classification is evaluated. The SNN maintains high accuracy for extended periods of 2 years at cryogenic temperatures, while an accuracy drop of 10.8% is observed at room temperature. These results highlight the potential of multilevel ePCMs in brain-inspired cryogenic computing applications, offering a promising avenue for the evolution of unconventional computing systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低温 SNN 的 28 纳米 FDSOI 嵌入式 PCM 在 12 K 时漂移接近于零
为了规避传统计算的瓶颈,从大脑启发设计到低温量子系统等硬件替代方案都需要集成新兴的非易失性存储器。然而,低温兼容存储器的不成熟和不可靠阻碍了可扩展计算的发展。本研究对 28 纳米 FD-SOI 衬底嵌入富 Ge Ge2Sb2Te5 相变存储器(ePCMs)进行了表征,其温度可低至 12 K,从而克服了这些障碍。研究表明,ePCMs 与低温兼容,能以最小漂移编码多种电阻状态,这对先进计算解决方案至关重要。通过模拟,评估了 ePCM 对执行 MNIST 分类的尖峰神经网络 (SNN) 的影响。在低温条件下,SNN 可在长达 2 年的时间内保持较高的准确度,而在室温条件下,准确度下降了 10.8%。这些结果凸显了多级 ePCM 在大脑启发的低温计算应用中的潜力,为非常规计算系统的发展提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermodynamic linear algebra Efficient generation of grids and traversal graphs in compositional spaces towards exploration and path planning Demonstration of 4-quadrant analog in-memory matrix multiplication in a single modulation In-memory search with learning to hash based on resistive memory for recommendation acceleration A perfect storm and a new dawn for unconventional computing technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1