Demonstration of 4-quadrant analog in-memory matrix multiplication in a single modulation

Manuel Le Gallo, Oscar Hrynkevych, Benedikt Kersting, Geethan Karunaratne, Athanasios Vasilopoulos, Riduan Khaddam-Aljameh, Ghazi Sarwat Syed, Abu Sebastian
{"title":"Demonstration of 4-quadrant analog in-memory matrix multiplication in a single modulation","authors":"Manuel Le Gallo, Oscar Hrynkevych, Benedikt Kersting, Geethan Karunaratne, Athanasios Vasilopoulos, Riduan Khaddam-Aljameh, Ghazi Sarwat Syed, Abu Sebastian","doi":"10.1038/s44335-024-00010-4","DOIUrl":null,"url":null,"abstract":"Analog in-memory computing (AIMC) leverages the inherent physical characteristics of resistive memory devices to execute computational operations, notably matrix-vector multiplications (MVMs). However, executing MVMs using a single-phase reading scheme to reduce latency necessitates the simultaneous application of both positive and negative voltages across resistive memory devices. This degrades the accuracy of the computation due to the dependence of the device conductance on the voltage polarity. Here, we demonstrate the realization of a 4-quadrant MVM in a single modulation by developing analog and digital calibration procedures to mitigate the conductance polarity dependence, fully implemented on a multi-core AIMC chip based on phase-change memory. With this approach, we experimentally demonstrate accurate neural network inference and similarity search tasks using one or multiple cores of the chip, at 4 times higher MVM throughput and energy efficiency than the conventional four-phase reading scheme.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44335-024-00010-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Unconventional Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44335-024-00010-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analog in-memory computing (AIMC) leverages the inherent physical characteristics of resistive memory devices to execute computational operations, notably matrix-vector multiplications (MVMs). However, executing MVMs using a single-phase reading scheme to reduce latency necessitates the simultaneous application of both positive and negative voltages across resistive memory devices. This degrades the accuracy of the computation due to the dependence of the device conductance on the voltage polarity. Here, we demonstrate the realization of a 4-quadrant MVM in a single modulation by developing analog and digital calibration procedures to mitigate the conductance polarity dependence, fully implemented on a multi-core AIMC chip based on phase-change memory. With this approach, we experimentally demonstrate accurate neural network inference and similarity search tasks using one or multiple cores of the chip, at 4 times higher MVM throughput and energy efficiency than the conventional four-phase reading scheme.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单调制 4 象限模拟内存矩阵乘法演示
模拟内存计算(AIMC)利用电阻式内存设备的固有物理特性执行计算操作,特别是矩阵向量乘法(MVM)。然而,要使用单相读取方案执行 MVM 以减少延迟,就必须在电阻式存储器件上同时施加正负电压。由于器件电导与电压极性有关,这就降低了计算的准确性。在这里,我们通过开发模拟和数字校准程序来减轻电导极性依赖性,并在基于相变存储器的多核 AIMC 芯片上全面实施,从而展示了在单调制中实现 4 象限 MVM 的方法。利用这种方法,我们在实验中演示了使用芯片的一个或多个内核进行精确的神经网络推理和相似性搜索任务,其 MVM 吞吐量和能效比传统的四相读取方案高出 4 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermodynamic linear algebra Efficient generation of grids and traversal graphs in compositional spaces towards exploration and path planning Demonstration of 4-quadrant analog in-memory matrix multiplication in a single modulation In-memory search with learning to hash based on resistive memory for recommendation acceleration A perfect storm and a new dawn for unconventional computing technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1