Adiabatic leaky integrate and fire neurons with refractory period for ultra low energy neuromorphic computing

Marco Massarotto, Stefano Saggini, Mirko Loghi, David Esseni
{"title":"Adiabatic leaky integrate and fire neurons with refractory period for ultra low energy neuromorphic computing","authors":"Marco Massarotto, Stefano Saggini, Mirko Loghi, David Esseni","doi":"10.1038/s44335-024-00013-1","DOIUrl":null,"url":null,"abstract":"In recent years, the in-memory-computing in charge domain has gained significant interest as a promising solution to further enhance the energy efficiency of neuromorphic hardware. In this work, we explore the synergy between the brain-inspired computation and the adiabatic paradigm by presenting an adiabatic Leaky Integrate-and-Fire neuron in 180 nm CMOS technology, that is able to emulate the most important primitives for a valuable neuromorphic computation, such as the accumulation of the incoming input spikes, an exponential leakage of the membrane potential and a tunable refractory period. Differently from previous contributions in the literature, our design can exploit both the charging and recovery phases of the adiabatic operation to ensure a seamless and continuous computation, all the while exchanging energy with the power supply with an efficiency higher than 90% over a wide range of resonance frequencies, and even surpassing 99% for the lowest frequencies. Our simulations unveil a minimum energy per synaptic operation of 470 fJ at a 500 kHz resonance frequency, which yields a 9x energy saving with respect to a non-adiabatic operation.","PeriodicalId":501715,"journal":{"name":"npj Unconventional Computing","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44335-024-00013-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Unconventional Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44335-024-00013-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the in-memory-computing in charge domain has gained significant interest as a promising solution to further enhance the energy efficiency of neuromorphic hardware. In this work, we explore the synergy between the brain-inspired computation and the adiabatic paradigm by presenting an adiabatic Leaky Integrate-and-Fire neuron in 180 nm CMOS technology, that is able to emulate the most important primitives for a valuable neuromorphic computation, such as the accumulation of the incoming input spikes, an exponential leakage of the membrane potential and a tunable refractory period. Differently from previous contributions in the literature, our design can exploit both the charging and recovery phases of the adiabatic operation to ensure a seamless and continuous computation, all the while exchanging energy with the power supply with an efficiency higher than 90% over a wide range of resonance frequencies, and even surpassing 99% for the lowest frequencies. Our simulations unveil a minimum energy per synaptic operation of 470 fJ at a 500 kHz resonance frequency, which yields a 9x energy saving with respect to a non-adiabatic operation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing with oscillators from theoretical underpinnings to applications and demonstrators Adiabatic leaky integrate and fire neurons with refractory period for ultra low energy neuromorphic computing Thermodynamic linear algebra Efficient generation of grids and traversal graphs in compositional spaces towards exploration and path planning Demonstration of 4-quadrant analog in-memory matrix multiplication in a single modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1