Probing for omitted variable bias: The role of the impact threshold of a confounding variable in complementing instrumental variable estimations

IF 7.8 1区 管理学 Q1 BUSINESS Industrial Marketing Management Pub Date : 2024-09-03 DOI:10.1016/j.indmarman.2024.08.009
David Bendig, Jonathan Hoke
{"title":"Probing for omitted variable bias: The role of the impact threshold of a confounding variable in complementing instrumental variable estimations","authors":"David Bendig,&nbsp;Jonathan Hoke","doi":"10.1016/j.indmarman.2024.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>Endogeneity due to omitted variable bias presents a significant challenge in empirical marketing research. The instrumental variable (IV) estimation is a prevalent technique to identify this bias, but its correct application can be complex and demanding. This study presents the impact threshold of a confounding variable (ITCV) as a valuable tool for assessing the likelihood of omitted variable bias. Instead of replacing IV estimations, we propose that the ITCV should precede such advanced techniques, as the IV approach may be unnecessary if the ITCV suggests no significant concern for omitted variable bias. This study contributes to the field of empirical marketing research by (1) detailing the theoretical foundations and practical applications of the ITCV, making it accessible to all researchers, regardless of their statistical expertise; (2) comparing the ITCV directly with IV estimation techniques across key metrics; (3) providing an interdisciplinary guide with step-by-step instructions on how to implement the ITCV using Stata and R; (4) demonstrating the ITCV's effectiveness through empirical evidence using a hypothetical research model, thus underscoring its practical utility and promoting its wider adoption; and (5) offering comprehensive reporting guidelines for the ITCV, complete with graphical illustrations, tables, and references to relevant studies.</p></div>","PeriodicalId":51345,"journal":{"name":"Industrial Marketing Management","volume":"122 ","pages":"Pages 145-159"},"PeriodicalIF":7.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019850124001391/pdfft?md5=d4c20ff01794a6a3a22b8ab9549e0ed5&pid=1-s2.0-S0019850124001391-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Marketing Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019850124001391","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

Endogeneity due to omitted variable bias presents a significant challenge in empirical marketing research. The instrumental variable (IV) estimation is a prevalent technique to identify this bias, but its correct application can be complex and demanding. This study presents the impact threshold of a confounding variable (ITCV) as a valuable tool for assessing the likelihood of omitted variable bias. Instead of replacing IV estimations, we propose that the ITCV should precede such advanced techniques, as the IV approach may be unnecessary if the ITCV suggests no significant concern for omitted variable bias. This study contributes to the field of empirical marketing research by (1) detailing the theoretical foundations and practical applications of the ITCV, making it accessible to all researchers, regardless of their statistical expertise; (2) comparing the ITCV directly with IV estimation techniques across key metrics; (3) providing an interdisciplinary guide with step-by-step instructions on how to implement the ITCV using Stata and R; (4) demonstrating the ITCV's effectiveness through empirical evidence using a hypothetical research model, thus underscoring its practical utility and promoting its wider adoption; and (5) offering comprehensive reporting guidelines for the ITCV, complete with graphical illustrations, tables, and references to relevant studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测遗漏变量偏差:混杂变量的影响阈值在补充工具变量估计中的作用
遗漏变量偏差导致的内生性是市场营销实证研究中的一项重大挑战。工具变量(IV)估算是识别这种偏差的常用技术,但其正确应用可能非常复杂且要求较高。本研究将混杂变量的影响阈值(ITCV)作为评估遗漏变量偏差可能性的重要工具。我们建议,ITCV 不应取代 IV 估计,而应先于此类先进技术,因为如果 ITCV 显示遗漏变量偏差问题不大,IV 方法可能就没有必要了。本研究通过以下方式为实证营销研究领域做出了贡献:(1)详细介绍了 ITCV 的理论基础和实际应用,使所有研究人员,无论其统计专业知识如何,都能使用 ITCV;(2)直接比较了 ITCV 与 IV 估计技术的关键指标;(3)提供了一份跨学科指南,逐步说明了如何使用 Stata 和 R 来实施 ITCV;(4) 通过使用假设研究模型的经验证据来证明 ITCV 的有效性,从而强调其实用性并促进其更广泛的应用;以及 (5) 为 ITCV 提供全面的报告指南,并附有图解、表格和相关研究的参考文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
20.40%
发文量
255
期刊介绍: Industrial Marketing Management delivers theoretical, empirical, and case-based research tailored to the requirements of marketing scholars and practitioners engaged in industrial and business-to-business markets. With an editorial review board comprising prominent international scholars and practitioners, the journal ensures a harmonious blend of theory and practical applications in all articles. Scholars from North America, Europe, Australia/New Zealand, Asia, and various global regions contribute the latest findings to enhance the effectiveness and efficiency of industrial markets. This holistic approach keeps readers informed with the most timely data and contemporary insights essential for informed marketing decisions and strategies in global industrial and business-to-business markets.
期刊最新文献
Sustainable entrepreneurship: How do contextual factors play a role? How marketing and sales use digital tools for innovation ideation The value of congruence in social exchanges: A dyadic trust perspective on servitization The role of innovation capabilities upgradation and digitalization in value co-creation and PSS innovation performance Collaborative problemistic search capability and digital innovation: The moderating effects of IT capability and legal development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1