Structural, electronic and magnetic properties of double-Ge-layer MAX phase Cr2Ge2C: DFT study

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-09-03 DOI:10.1016/j.commatsci.2024.113340
{"title":"Structural, electronic and magnetic properties of double-Ge-layer MAX phase Cr2Ge2C: DFT study","authors":"","doi":"10.1016/j.commatsci.2024.113340","DOIUrl":null,"url":null,"abstract":"<div><p>The magnetic stability and electronic properties of a new MAX phase Cr<sub>2</sub>Ge<sub>2</sub>C are investigated using density functional theory (DFT) with the generalized gradient approximation GGA and GGA+U. Our work conducted predictive calculation of new nanolaminate Cr<sub>2</sub>Ge<sub>2</sub>C followed comparison with Ge-containing M<sub>2</sub>AX phases, the magnetic ground states are predicted as NM with GGA approximation and AFM configuration with GGA+U method. Our result have shown that the total and partial magnetic moment are greatly decreased rapidly to zero by adding Ge layer. Due to the extra Ge-layers, the TDOS of the Cr<sub>2</sub>Ge<sub>2</sub>C at the Fermi level reduces slightly compared with Cr<sub>2</sub>GeC and the Cr–C bond becomes more covalent compared with another study Cr<sub>2</sub>GeC. Finally, we hope that the theoretical study of the new MAX phase material is the first of a large family, which will give a plus in the future for experimenters and theoreticians.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005615","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetic stability and electronic properties of a new MAX phase Cr2Ge2C are investigated using density functional theory (DFT) with the generalized gradient approximation GGA and GGA+U. Our work conducted predictive calculation of new nanolaminate Cr2Ge2C followed comparison with Ge-containing M2AX phases, the magnetic ground states are predicted as NM with GGA approximation and AFM configuration with GGA+U method. Our result have shown that the total and partial magnetic moment are greatly decreased rapidly to zero by adding Ge layer. Due to the extra Ge-layers, the TDOS of the Cr2Ge2C at the Fermi level reduces slightly compared with Cr2GeC and the Cr–C bond becomes more covalent compared with another study Cr2GeC. Finally, we hope that the theoretical study of the new MAX phase material is the first of a large family, which will give a plus in the future for experimenters and theoreticians.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双锗层 MAX 相 Cr2Ge2C 的结构、电子和磁性能:DFT 研究
我们采用广义梯度近似 GGA 和 GGA+U 的密度泛函理论(DFT)研究了新型 MAX 相 Cr2Ge2C 的磁稳定性和电子特性。我们的工作对新型纳米层状化合物 Cr2Ge2C 进行了预测计算,并将其与含 Ge 的 M2AX 相进行了比较,用 GGA 近似法预测了 NM 磁基态,用 GGA+U 方法预测了 AFM 构型。我们的结果表明,加入 Ge 层后,总磁矩和部分磁矩迅速减小至零。由于额外的 Ge 层,Cr2Ge2C 在费米级的 TDOS 与 Cr2GeC 相比略有降低,Cr-C 键与另一项研究 Cr2GeC 相比变得更加共价。最后,我们希望对新型 MAX 相材料的理论研究是一个大家族中的第一个,这将为未来的实验人员和理论人员提供更多的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1