A molecular insight into frictional properties of hexagonal boron nitride: Exploring surface roughness and force field impact

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-09-03 DOI:10.1016/j.commatsci.2024.113323
{"title":"A molecular insight into frictional properties of hexagonal boron nitride: Exploring surface roughness and force field impact","authors":"","doi":"10.1016/j.commatsci.2024.113323","DOIUrl":null,"url":null,"abstract":"<div><p>Hexagonal boron nitride (hBN), a promising 2D nanomaterial, has potential applications in desalination and osmotic energy harvesting. In all these applications, surface roughness significantly impacts fluid flow in nanomaterial, but its precise effect remains unclear. This creates a knowledge gap in understanding how surface roughness influences water flow at the water-hBN interface, which hinders the development of accurate molecular dynamics (MD) simulations. Here, we address this gap by employing density functional theory (DFT) to calculate atomic charges on rough hBN surfaces. These charges are incorporated into MD simulations, revealing a strong influence on the water-hBN interface. This combined approach accurately predicts experimental water slip length. We further quantify the water flow behavior on hBN using established force fields. Incorporating surface roughness into the model yields results in close agreement with the experimental slip length of <span><math><mo>∼</mo></math></span>1 nm for water using FF-2 force fields, validating the simulation approach. Our findings highlight the importance of incorporating realistic surface roughness and force field models in MD simulations of water-nanomaterial interfaces. This work underscores the critical role of accurate 2D material models for understanding fluid flow in nanofluidic applications.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005445","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hexagonal boron nitride (hBN), a promising 2D nanomaterial, has potential applications in desalination and osmotic energy harvesting. In all these applications, surface roughness significantly impacts fluid flow in nanomaterial, but its precise effect remains unclear. This creates a knowledge gap in understanding how surface roughness influences water flow at the water-hBN interface, which hinders the development of accurate molecular dynamics (MD) simulations. Here, we address this gap by employing density functional theory (DFT) to calculate atomic charges on rough hBN surfaces. These charges are incorporated into MD simulations, revealing a strong influence on the water-hBN interface. This combined approach accurately predicts experimental water slip length. We further quantify the water flow behavior on hBN using established force fields. Incorporating surface roughness into the model yields results in close agreement with the experimental slip length of 1 nm for water using FF-2 force fields, validating the simulation approach. Our findings highlight the importance of incorporating realistic surface roughness and force field models in MD simulations of water-nanomaterial interfaces. This work underscores the critical role of accurate 2D material models for understanding fluid flow in nanofluidic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从分子角度了解六方氮化硼的摩擦特性:探索表面粗糙度和力场的影响
六方氮化硼(hBN)是一种前景广阔的二维纳米材料,在海水淡化和渗透能量收集方面具有潜在的应用价值。在所有这些应用中,表面粗糙度都会对纳米材料中的流体流动产生重大影响,但其确切影响仍不清楚。这就造成了在理解表面粗糙度如何影响水-纳米材料界面水流方面的知识空白,从而阻碍了精确分子动力学(MD)模拟的发展。在此,我们采用密度泛函理论 (DFT) 计算粗糙的氢化硼表面上的原子电荷,从而弥补了这一空白。这些电荷被纳入 MD 模拟,揭示了对水-卤化硼界面的强烈影响。这种组合方法可以准确预测实验水滑移长度。我们使用已建立的力场进一步量化了水在氢化硼上的流动行为。将表面粗糙度纳入模型得出的结果与使用 FF-2 力场的水实验滑移长度 ∼1 nm 非常接近,从而验证了模拟方法。我们的研究结果凸显了在水-纳米材料界面的 MD 模拟中加入现实表面粗糙度和力场模型的重要性。这项工作强调了准确的二维材料模型对于理解纳米流体应用中的流体流动的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1