An explainable artificial intelligence model for predictive maintenance and spare parts optimization

Ufuk Dereci , Gülfem Tuzkaya
{"title":"An explainable artificial intelligence model for predictive maintenance and spare parts optimization","authors":"Ufuk Dereci ,&nbsp;Gülfem Tuzkaya","doi":"10.1016/j.sca.2024.100078","DOIUrl":null,"url":null,"abstract":"<div><p>Maintenance strategies are vital for industrial and manufacturing systems. This study considers a proactive maintenance strategy and emphasizes using analytics and data science. We propose an Explainable Artificial Intelligence (XAI) methodology for predictive maintenance. The proposed method utilizes a machine learning project cycle and Python libraries to interpret the results using the Local Interpretable Model-agnostic Explanations (LIME) method. We also introduce an early concept of spare parts management, presenting insights from predictive maintenance outcomes and providing explanations for decision-makers to enhance their understanding of the influential factors behind predictions. This study demonstrates that utilizing machine learning models in predictive maintenance is highly beneficial; however, the binary outcomes of these models can be misunderstood by decision-makers. Detailed explanations provided to decision-makers will directly impact maintenance decisions and improve spare part management.</p></div>","PeriodicalId":101186,"journal":{"name":"Supply Chain Analytics","volume":"8 ","pages":"Article 100078"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949863524000219/pdfft?md5=de370f4dd5787db3d883f746b49da463&pid=1-s2.0-S2949863524000219-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supply Chain Analytics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949863524000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Maintenance strategies are vital for industrial and manufacturing systems. This study considers a proactive maintenance strategy and emphasizes using analytics and data science. We propose an Explainable Artificial Intelligence (XAI) methodology for predictive maintenance. The proposed method utilizes a machine learning project cycle and Python libraries to interpret the results using the Local Interpretable Model-agnostic Explanations (LIME) method. We also introduce an early concept of spare parts management, presenting insights from predictive maintenance outcomes and providing explanations for decision-makers to enhance their understanding of the influential factors behind predictions. This study demonstrates that utilizing machine learning models in predictive maintenance is highly beneficial; however, the binary outcomes of these models can be misunderstood by decision-makers. Detailed explanations provided to decision-makers will directly impact maintenance decisions and improve spare part management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于预测性维护和备件优化的可解释人工智能模型
维护策略对工业和制造系统至关重要。本研究考虑了主动维护策略,并强调使用分析和数据科学。我们提出了一种用于预测性维护的可解释人工智能(XAI)方法。所提出的方法利用机器学习项目周期和 Python 库,使用本地可解释模型-不可知论解释 (LIME) 方法来解释结果。我们还引入了备件管理的早期概念,从预测性维护结果中提出见解,并为决策者提供解释,以加深他们对预测背后影响因素的理解。这项研究表明,在预测性维护中使用机器学习模型非常有益;但是,这些模型的二元结果可能会被决策者误解。向决策者提供详细的解释将直接影响维护决策并改善备件管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Integrated Multi-Product Biodiesel and Bioethanol Supply Chain Model with Torrefaction Under Uncertainty An agility and performance assessment framework for supply chains using confirmatory factor analysis and structural equation modelling A conceptual digital twin framework for supply chain recovery and resilience A strategic and social analytics model for sustainable packaging in the cosmetic industry A multi-step mixed integer programming heuristic for warehouse layout optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1