Jiya Pan, Fan Gao, Jinliang Wang, Jianpeng Zhang, Qianwei Liu, Yuncheng Deng
{"title":"A main direction-based noise removal algorithm for ICESat-2 photon-counting LiDAR data","authors":"Jiya Pan, Fan Gao, Jinliang Wang, Jianpeng Zhang, Qianwei Liu, Yuncheng Deng","doi":"10.1007/s00190-024-01887-6","DOIUrl":null,"url":null,"abstract":"<p>A new generation of space-borne LiDAR (Light Detection And Ranging) satellite ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) equipped with ATLAS (Advanced Topographic Laser Altimeter System) can perform earth observation. The main problem is to remove the noise photons from the data. The study proposes a main direction-based noise removal algorithm based on three sets of photon-counting LiDAR data. In order to extract the main direction, features in the spatial neighborhood (<i>k</i>) of photons are calculated, most of the initial noise is removed according to the angle between the main direction of photons and the along-track distance direction. Qualitative and quantitative evaluations are employed to validate the proposed algorithm. The obtained results and the performed analysis reveal that the proposed algorithm can process day and night data with different signal-to-noise ratios, while the accuracy of various surface types exceeds 96%. More specifically, the accuracy of the proposed algorithm for night data can reach 97.43%. Based on quantitative evaluations using SPL (Single photon LiDAR), MATLAS, and airborne LiDAR data, the average <i>R</i>, <i>P</i>, and <i>F</i> values are 0.951, 0.959, and 0.954, respectively. Meanwhile, the result of the proposed algorithm is compatible with the ATL03 photons with low, medium, and high confidence, and its accuracy is superior to ATL08 products. The proposed algorithm had fewer parameters and significantly outperformed the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the improved local statistical distance algorithm. This algorithm is expected to provide a reference for subsequent photon-counting LiDAR data processing.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01887-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A new generation of space-borne LiDAR (Light Detection And Ranging) satellite ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) equipped with ATLAS (Advanced Topographic Laser Altimeter System) can perform earth observation. The main problem is to remove the noise photons from the data. The study proposes a main direction-based noise removal algorithm based on three sets of photon-counting LiDAR data. In order to extract the main direction, features in the spatial neighborhood (k) of photons are calculated, most of the initial noise is removed according to the angle between the main direction of photons and the along-track distance direction. Qualitative and quantitative evaluations are employed to validate the proposed algorithm. The obtained results and the performed analysis reveal that the proposed algorithm can process day and night data with different signal-to-noise ratios, while the accuracy of various surface types exceeds 96%. More specifically, the accuracy of the proposed algorithm for night data can reach 97.43%. Based on quantitative evaluations using SPL (Single photon LiDAR), MATLAS, and airborne LiDAR data, the average R, P, and F values are 0.951, 0.959, and 0.954, respectively. Meanwhile, the result of the proposed algorithm is compatible with the ATL03 photons with low, medium, and high confidence, and its accuracy is superior to ATL08 products. The proposed algorithm had fewer parameters and significantly outperformed the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the improved local statistical distance algorithm. This algorithm is expected to provide a reference for subsequent photon-counting LiDAR data processing.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics