{"title":"Uncertainty propagation through integral inversion of satellite gradient data in regional gravity field recovery","authors":"Mehdi Eshagh, Martin Pitoňák, Pavel Novák","doi":"10.1007/s00190-024-01929-z","DOIUrl":null,"url":null,"abstract":"<p>The Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission, launched by the European Space Agency, provided high-quality gravitational gradient data with near-global coverage, excluding polar regions. These data have been instrumental in regional gravity field modelling through various methods. One approach involves a mathematical model based on Fredholm’s integral equation of the first kind, which relates surface gravity anomalies to satellite gradient data. Solving this equation requires discretising a surface integral and applying further regularisation techniques to stabilise the numerical solution of a resulting system of linear equations. This study examines four methods for modifying the system of linear equations derived by discretising the Fredholm integral equation. The methods include direct inversion, remove-compute-restore, truncation reduction of the integral formula, and inversion of a modified integral for estimating surface gravity anomalies from satellite gradient data over a test area in Central Europe. Since the system of linear equations is ill-conditioned, the Tikhonov regularisation is applied to stabilise its numerical solution. To assess the precision and reliability of the estimated gravity anomalies, the study introduces mathematical models for estimation of biased and de-biased noise variance–covariance matrices of estimated surface gravity anomalies. The results indicate that the signal-to-noise ratio of reduced satellite gradient data in the remove-compute-restore method is smaller compared to other methods in the study, necessitating stronger stabilisation of the model to recover surface gravity anomalies. This, in turn, leads to a more optimistic uncertainty propagation than the other considered methods.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"32 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01929-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission, launched by the European Space Agency, provided high-quality gravitational gradient data with near-global coverage, excluding polar regions. These data have been instrumental in regional gravity field modelling through various methods. One approach involves a mathematical model based on Fredholm’s integral equation of the first kind, which relates surface gravity anomalies to satellite gradient data. Solving this equation requires discretising a surface integral and applying further regularisation techniques to stabilise the numerical solution of a resulting system of linear equations. This study examines four methods for modifying the system of linear equations derived by discretising the Fredholm integral equation. The methods include direct inversion, remove-compute-restore, truncation reduction of the integral formula, and inversion of a modified integral for estimating surface gravity anomalies from satellite gradient data over a test area in Central Europe. Since the system of linear equations is ill-conditioned, the Tikhonov regularisation is applied to stabilise its numerical solution. To assess the precision and reliability of the estimated gravity anomalies, the study introduces mathematical models for estimation of biased and de-biased noise variance–covariance matrices of estimated surface gravity anomalies. The results indicate that the signal-to-noise ratio of reduced satellite gradient data in the remove-compute-restore method is smaller compared to other methods in the study, necessitating stronger stabilisation of the model to recover surface gravity anomalies. This, in turn, leads to a more optimistic uncertainty propagation than the other considered methods.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics