{"title":"EITLEM-Kinetics: A deep-learning framework for kinetic parameter prediction of mutant enzymes","authors":"Xiaowei Shen, Ziheng Cui, Jianyu Long, Shiding Zhang, Biqiang Chen, Tianwei Tan","doi":"10.1016/j.checat.2024.101094","DOIUrl":null,"url":null,"abstract":"<p>The core issue in implementing <em>in silico</em> enzyme screening lies in accurately evaluating the merits of mutants. The best solution to this problem would undoubtedly be the precise prediction of kinetic parameters for mutant enzymes to directly assess the catalytic efficiency and activity of enzymes. Previously developed models of this type are mostly limited to predictions for wild-type enzymes and tend to exhibit poorer generalization capabilities. Here, a novel deep-learning model framework and an ensemble iterative transfer learning strategy for enzyme mutant kinetics parameter (<em>k</em><sub><em>cat</em></sub>, <em>K</em><sub><em>m</em></sub>, and <em>KK</em><sub><em>m</em></sub>) prediction (EITLEM-Kinetics) were developed. This approach is designed to overcome the limitations imposed by sparse training samples on the model’s predictive performance and accurately predict the kinetic parameters of various mutants. This development is set to provide significant assistance in future endeavors to construct virtual screening methods aimed at enhancing enzyme activity and offer innovative solutions for researchers grappling with similar challenges.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"48 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The core issue in implementing in silico enzyme screening lies in accurately evaluating the merits of mutants. The best solution to this problem would undoubtedly be the precise prediction of kinetic parameters for mutant enzymes to directly assess the catalytic efficiency and activity of enzymes. Previously developed models of this type are mostly limited to predictions for wild-type enzymes and tend to exhibit poorer generalization capabilities. Here, a novel deep-learning model framework and an ensemble iterative transfer learning strategy for enzyme mutant kinetics parameter (kcat, Km, and KKm) prediction (EITLEM-Kinetics) were developed. This approach is designed to overcome the limitations imposed by sparse training samples on the model’s predictive performance and accurately predict the kinetic parameters of various mutants. This development is set to provide significant assistance in future endeavors to construct virtual screening methods aimed at enhancing enzyme activity and offer innovative solutions for researchers grappling with similar challenges.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.