{"title":"Visualizing active species in CO2 electroreduction","authors":"Yu Yang, Yaohui Shi, Fengwang Li","doi":"10.1016/j.checat.2024.101230","DOIUrl":null,"url":null,"abstract":"Understanding the evolution of Cu-based catalysts during electrochemical CO<sub>2</sub> reduction (ECR) remains challenging. The study by Lim et al. in <em>Joule</em> devises an <em>operando</em> scanning transmission X-ray microscopy to investigate the dynamic phase transformations of Cu catalysts and reveals that Cu<sup>2+</sup> species play a crucial role in enhancing C–C coupling. The findings inform the authors of an approach to dynamically redirect the oxidation state of Cu, achieving, as a result, higher selectivity and efficiency for ECR catalysis.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"31 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the evolution of Cu-based catalysts during electrochemical CO2 reduction (ECR) remains challenging. The study by Lim et al. in Joule devises an operando scanning transmission X-ray microscopy to investigate the dynamic phase transformations of Cu catalysts and reveals that Cu2+ species play a crucial role in enhancing C–C coupling. The findings inform the authors of an approach to dynamically redirect the oxidation state of Cu, achieving, as a result, higher selectivity and efficiency for ECR catalysis.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.