{"title":"Nitric oxide action in the digestive fluid of Nepenthes × ventrata is linked to the modulation of ROS level","authors":"","doi":"10.1016/j.plaphy.2024.109088","DOIUrl":null,"url":null,"abstract":"<div><p><em>Nepenthes</em> are carnivorous plants with photoactive leaves converted into jug-shaped containers filled with the digestive fluid. The digestion requires various enzymes and reactive oxygen species (ROS) that facilitate proteolysis. Reactive nitrogen species are present in the digestive fluid of <em>Nepenthes × ventrata</em>, and the increased nitric oxide (NO) formation is associated with protein degradation. The aim of the work was to verify the beneficial effect of NO application into the trap on the dynamics of protein digestion and ROS homeostasis. Measurements were done using the digestive fluid or the tissue collected from the mature pitcher plants (fed) grown in a greenhouse. Two independent methods confirmed NO formation in the digestive fluid of fed and non-fed traps. NO supplementation with food into the trap accelerated protein degradation in the digestive fluid by increasing the proteolytic activity. NO modulated free radical formation (as the result of direct impact on NADPH oxidase), stimulated ROS scavenging capacity, increased -SH groups and flavonoids content, particularly at the beginning of the digestion. In non-fed traps, the relatively high level of protein nitration in the digestive fluid may prevent self-protein proteolysis. Whereas, after initiation of the digestion decreasing level of nitrated proteins in the fluid may indicate their accelerated degradation.</p><p>Therefore, it can be assumed that NO exhibits a protective effect on the fluid and the trap tissue before digestion, while during digestion, NO is an accelerator of protein decomposition and the ROS balance keeper.</p></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0981942824007563/pdfft?md5=48d9b99606970852b608d04d33e8c4a9&pid=1-s2.0-S0981942824007563-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824007563","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nepenthes are carnivorous plants with photoactive leaves converted into jug-shaped containers filled with the digestive fluid. The digestion requires various enzymes and reactive oxygen species (ROS) that facilitate proteolysis. Reactive nitrogen species are present in the digestive fluid of Nepenthes × ventrata, and the increased nitric oxide (NO) formation is associated with protein degradation. The aim of the work was to verify the beneficial effect of NO application into the trap on the dynamics of protein digestion and ROS homeostasis. Measurements were done using the digestive fluid or the tissue collected from the mature pitcher plants (fed) grown in a greenhouse. Two independent methods confirmed NO formation in the digestive fluid of fed and non-fed traps. NO supplementation with food into the trap accelerated protein degradation in the digestive fluid by increasing the proteolytic activity. NO modulated free radical formation (as the result of direct impact on NADPH oxidase), stimulated ROS scavenging capacity, increased -SH groups and flavonoids content, particularly at the beginning of the digestion. In non-fed traps, the relatively high level of protein nitration in the digestive fluid may prevent self-protein proteolysis. Whereas, after initiation of the digestion decreasing level of nitrated proteins in the fluid may indicate their accelerated degradation.
Therefore, it can be assumed that NO exhibits a protective effect on the fluid and the trap tissue before digestion, while during digestion, NO is an accelerator of protein decomposition and the ROS balance keeper.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.