{"title":"Multi-scale constitutive modeling of the brittle–ductile transition behavior of rocks with microcracks and two populations of pores","authors":"Sili Liu , Qizhi Zhu , Jin Zhang","doi":"10.1016/j.gete.2024.100591","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper is devoted to multi-scale constitutive modeling of the brittle–ductile transition in rocks. The rocks are considered as heterogeneous media composed of solid phase weakened by microcracks at the microscale and two different populations of pores at the micro and mesoscales. A Drucker–Prager type criterion is first formulated considering microcracking-induced damage in the solid phase. By means of a two-step modified secant variational method, this criterion is then adopted to derive a micro–macro model for double porous medium taking into account the effects of pores. Considering that the operative deformation mechanism in brittle rocks is microcracking, the Drucker–Prager type microcrack damage model is applied to describe the transition of three typical brittle rocks from brittle faulting to dilatant ductile flow by establishing a linear relation between the critical damage caused by microcrack propagation and confining pressure. By introducing an appropriate plastic hardening law and taking into account the influence of confining pressure on plastic hardening parameter and dilatancy coefficient, the micro–macro model for porous rocks is applied to describe the transition from brittle faulting to compactive ductile flow in two typical porous rocks. Comparisons between numerical simulations and experimental data show that the main features of brittle–ductile transition of two types of rocks are well captured by the proposed model.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100591"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000583","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The present paper is devoted to multi-scale constitutive modeling of the brittle–ductile transition in rocks. The rocks are considered as heterogeneous media composed of solid phase weakened by microcracks at the microscale and two different populations of pores at the micro and mesoscales. A Drucker–Prager type criterion is first formulated considering microcracking-induced damage in the solid phase. By means of a two-step modified secant variational method, this criterion is then adopted to derive a micro–macro model for double porous medium taking into account the effects of pores. Considering that the operative deformation mechanism in brittle rocks is microcracking, the Drucker–Prager type microcrack damage model is applied to describe the transition of three typical brittle rocks from brittle faulting to dilatant ductile flow by establishing a linear relation between the critical damage caused by microcrack propagation and confining pressure. By introducing an appropriate plastic hardening law and taking into account the influence of confining pressure on plastic hardening parameter and dilatancy coefficient, the micro–macro model for porous rocks is applied to describe the transition from brittle faulting to compactive ductile flow in two typical porous rocks. Comparisons between numerical simulations and experimental data show that the main features of brittle–ductile transition of two types of rocks are well captured by the proposed model.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.