Jaime E. Granados , Catalina Lozada , Bernardo Caicedo
{"title":"Experimental study of evaporation from soil-atmosphere interfaces","authors":"Jaime E. Granados , Catalina Lozada , Bernardo Caicedo","doi":"10.1016/j.gete.2025.100658","DOIUrl":null,"url":null,"abstract":"<div><div>Experimental evaporation tests on 2–20 mm soil samples were performed under a wide range of atmospheric conditions using a climatic chamber. The relatively thin thickness of the samples was intended to represent the soil-atmosphere interface layer. Atmospheric conditions of wind velocity, air temperature, relative humidity and irradiance were imposed on bare soil surfaces of sand, compacted clay and kaolin slurry. The results of an extensive number of experimental tests show a good correlation between the atmospheric conditions measured near the soil surface and Potential Evaporation (PE) and soil initial evaporation rates. An empirical model based on an inverse sigmoid function is proposed to express the ratio between Actual Evaporation (AE) and Potential Evaporation (AE/PE) rates versus soil suction. The evaporation results of the present study may be used to predict PE and AE rates from soil surfaces of different textures under a broad range of environmental conditions. The empirical model may be used in soil-atmosphere interaction models to estimate water flux across soil-atmosphere boundaries.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"42 ","pages":"Article 100658"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000231","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental evaporation tests on 2–20 mm soil samples were performed under a wide range of atmospheric conditions using a climatic chamber. The relatively thin thickness of the samples was intended to represent the soil-atmosphere interface layer. Atmospheric conditions of wind velocity, air temperature, relative humidity and irradiance were imposed on bare soil surfaces of sand, compacted clay and kaolin slurry. The results of an extensive number of experimental tests show a good correlation between the atmospheric conditions measured near the soil surface and Potential Evaporation (PE) and soil initial evaporation rates. An empirical model based on an inverse sigmoid function is proposed to express the ratio between Actual Evaporation (AE) and Potential Evaporation (AE/PE) rates versus soil suction. The evaporation results of the present study may be used to predict PE and AE rates from soil surfaces of different textures under a broad range of environmental conditions. The empirical model may be used in soil-atmosphere interaction models to estimate water flux across soil-atmosphere boundaries.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.