{"title":"Settlement analysis in the context of underground climate change","authors":"Anjali N. Thota, Alessandro F. Rotta Loria","doi":"10.1016/j.gete.2025.100662","DOIUrl":null,"url":null,"abstract":"<div><div>Subsurface urban heat islands are a pressing global issue responsible for an underground climate change beneath cities. Over the past two decades, this phenomenon has been identified as a threat to subsurface ecosystems, hydrogeological systems, transportation systems, and public health. Recently, underground climate change has also been reported as a silent hazard for civil infrastructure due to thermally induced ground deformations. This paper expands the study of the impacts of underground climate change on civil infrastructure by presenting a simplified, one-dimensional settlement analysis that simulates the deformations driven by subsurface urban heat islands as a viscous process driven by thermally accelerated creep. Specifically, this investigation focuses on the vertical displacements of the ground surrounding a caisson foundation supporting a 39-storey building located in the Chicago Loop district under the influence of underground climate change for 100 years. The results reveal that the thermally induced ground displacements caused by underground climate change can be substantial and strongly depend on the ground warming rate and the spatial extent of subterranean temperature variations. The study provides new evidence about the relevance of underground climate change for the serviceability performance of civil infrastructure, motivating future research to identify which types of earth-contact structures and infrastructures may be particularly affected by thermally induced ground deformations caused by this phenomenon.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"42 ","pages":"Article 100662"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000279","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Subsurface urban heat islands are a pressing global issue responsible for an underground climate change beneath cities. Over the past two decades, this phenomenon has been identified as a threat to subsurface ecosystems, hydrogeological systems, transportation systems, and public health. Recently, underground climate change has also been reported as a silent hazard for civil infrastructure due to thermally induced ground deformations. This paper expands the study of the impacts of underground climate change on civil infrastructure by presenting a simplified, one-dimensional settlement analysis that simulates the deformations driven by subsurface urban heat islands as a viscous process driven by thermally accelerated creep. Specifically, this investigation focuses on the vertical displacements of the ground surrounding a caisson foundation supporting a 39-storey building located in the Chicago Loop district under the influence of underground climate change for 100 years. The results reveal that the thermally induced ground displacements caused by underground climate change can be substantial and strongly depend on the ground warming rate and the spatial extent of subterranean temperature variations. The study provides new evidence about the relevance of underground climate change for the serviceability performance of civil infrastructure, motivating future research to identify which types of earth-contact structures and infrastructures may be particularly affected by thermally induced ground deformations caused by this phenomenon.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.