High-entropy-driven half-Heusler alloys boost thermoelectric performance

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-09-09 DOI:10.1016/j.joule.2024.08.008
Subrata Ghosh, Amin Nozariasbmarz, Huiju Lee, Lavanya Raman, Shweta Sharma, Rabeya B. Smriti, Dipika Mandal, Yu Zhang, Sumanta K. Karan, Na Liu, Jennifer L. Gray, Mohan Sanghadasa, Yi Xia, Shashank Priya, Wenjie Li, Bed Poudel
{"title":"High-entropy-driven half-Heusler alloys boost thermoelectric performance","authors":"Subrata Ghosh, Amin Nozariasbmarz, Huiju Lee, Lavanya Raman, Shweta Sharma, Rabeya B. Smriti, Dipika Mandal, Yu Zhang, Sumanta K. Karan, Na Liu, Jennifer L. Gray, Mohan Sanghadasa, Yi Xia, Shashank Priya, Wenjie Li, Bed Poudel","doi":"10.1016/j.joule.2024.08.008","DOIUrl":null,"url":null,"abstract":"<p>High-entropy engineering effectively reduces lattice thermal conductivity (κ<sub>L</sub>) in thermoelectric (TE) materials; however, the chemical complexity of multiple elements in high-entropy materials often leads to phase segregation, limiting their electrical transport properties and overall TE performance. Herein, we report a <em>p</em>-type high-entropy stabilized single-phase half-Heusler alloy, MFeSb, specifically designed to enhance configurational entropy by introducing multiple element species on a single atomic site. This material exhibited low κ<sub>L</sub> due to phonon group velocity reduction and strong phonon scattering from lattice strain generated through distorted lattices while maintaining a high power factor. The material demonstrated a record high figure of merit (<em>zT</em>) of 1.5 at 1,060 K, with an average <em>zT</em> of ∼0.92 over 300–1,060 K. Furthermore, superior conversion efficiencies of 15% and 14% for a single-leg and a unicouple module at a temperature difference of ΔT ∼671 K were achieved. Our findings provide a new avenue for enhancing TE material performance through high-entropy engineering.</p>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.08.008","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy engineering effectively reduces lattice thermal conductivity (κL) in thermoelectric (TE) materials; however, the chemical complexity of multiple elements in high-entropy materials often leads to phase segregation, limiting their electrical transport properties and overall TE performance. Herein, we report a p-type high-entropy stabilized single-phase half-Heusler alloy, MFeSb, specifically designed to enhance configurational entropy by introducing multiple element species on a single atomic site. This material exhibited low κL due to phonon group velocity reduction and strong phonon scattering from lattice strain generated through distorted lattices while maintaining a high power factor. The material demonstrated a record high figure of merit (zT) of 1.5 at 1,060 K, with an average zT of ∼0.92 over 300–1,060 K. Furthermore, superior conversion efficiencies of 15% and 14% for a single-leg and a unicouple module at a temperature difference of ΔT ∼671 K were achieved. Our findings provide a new avenue for enhancing TE material performance through high-entropy engineering.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高熵驱动半休斯勒合金提升热电性能
高熵工程可有效降低热电(TE)材料的晶格热导率(κL);然而,高熵材料中多种元素的化学复杂性往往会导致相分离,从而限制其电气传输特性和整体热电性能。在此,我们报告了一种 p 型高熵稳定单相半赫斯勒合金 MFeSb,该合金专门设计用于通过在单个原子位点上引入多种元素来增强构型熵。由于声子群速度降低以及扭曲晶格产生的晶格应变对声子的强烈散射,这种材料表现出较低的κL,同时保持了较高的功率因数。此外,在 ΔT ∼ 671 K 的温差条件下,单腿模块和单耦合模块的转换效率分别达到了 15%和 14%。我们的研究结果为通过高熵工程提高 TE 材料性能提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
High-performance MgAgSb/Mg3(Sb,Bi)2-based thermoelectrics with η = 12% at T ≤ 583K Spectrally engineered textiles for personal cooling Photochemical CO2 hydrogenation to carbon nanotubes and H2O for oxygen recovery in space exploration Empowering all-solid-state Li-ion batteries with self-stabilizing Sn-based anodes Scalable and sustainable manufacturing of twin boundary-enhanced flexible Bi0.4Sb1.6Te3 films with high thermoelectric performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1