Photochemical CO2 hydrogenation to carbon nanotubes and H2O for oxygen recovery in space exploration

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-11-20 DOI:10.1016/j.joule.2024.08.007
Jun Wang , Jiajia Wang , Jianyong Feng , Yingfei Hu , Huiting Huang , Ningsi Zhang , Minyue Zhao , Wangxi Liu , Changhao Liu , Zhi Zhu , Shicheng Yan , Tao Yu , Ce Zhang , Wei Yao , Zhigang Zou , Zhaosheng Li
{"title":"Photochemical CO2 hydrogenation to carbon nanotubes and H2O for oxygen recovery in space exploration","authors":"Jun Wang ,&nbsp;Jiajia Wang ,&nbsp;Jianyong Feng ,&nbsp;Yingfei Hu ,&nbsp;Huiting Huang ,&nbsp;Ningsi Zhang ,&nbsp;Minyue Zhao ,&nbsp;Wangxi Liu ,&nbsp;Changhao Liu ,&nbsp;Zhi Zhu ,&nbsp;Shicheng Yan ,&nbsp;Tao Yu ,&nbsp;Ce Zhang ,&nbsp;Wei Yao ,&nbsp;Zhigang Zou ,&nbsp;Zhaosheng Li","doi":"10.1016/j.joule.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><div>The primary source of oxygen in space exploration is derived from water electrolysis. Herein, we discovered a mild photochemical hydrogenation process that can convert CO<sub>2</sub> into carbon nanotubes (CNTs) and H<sub>2</sub>O by using a Co-based catalyst. Hence, astronauts can extract oxygen from CO<sub>2</sub> metabolism to close the oxygen recycling loop (overall reaction: CO<sub>2</sub> → C + O<sub>2</sub>), allowing for ∼100% theoretical oxygen recovery. This photochemical technique has enabled a high turnover number (the molar ratio of C to Co) of 240 for CNT formation during a 100 h reaction in a flow reactor. The oxygen recovery efficiency reaches approximately 68% when using flowing CO<sub>2</sub> and H<sub>2</sub>, surpassing the theoretical maximum (50%) for the Sabatier reaction combined with water electrolysis at the International Space Station. The tip-growth mode of CNTs principally allows long-term oxygen recovery from CO<sub>2</sub>, in addition to space manufacturing of CNTs.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 11","pages":"Pages 3126-3141"},"PeriodicalIF":38.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124003817","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The primary source of oxygen in space exploration is derived from water electrolysis. Herein, we discovered a mild photochemical hydrogenation process that can convert CO2 into carbon nanotubes (CNTs) and H2O by using a Co-based catalyst. Hence, astronauts can extract oxygen from CO2 metabolism to close the oxygen recycling loop (overall reaction: CO2 → C + O2), allowing for ∼100% theoretical oxygen recovery. This photochemical technique has enabled a high turnover number (the molar ratio of C to Co) of 240 for CNT formation during a 100 h reaction in a flow reactor. The oxygen recovery efficiency reaches approximately 68% when using flowing CO2 and H2, surpassing the theoretical maximum (50%) for the Sabatier reaction combined with water electrolysis at the International Space Station. The tip-growth mode of CNTs principally allows long-term oxygen recovery from CO2, in addition to space manufacturing of CNTs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光化学二氧化碳加氢生成碳纳米管和 H2O,用于太空探索中的氧气回收
太空探索中氧气的主要来源是电解水。在此,我们发现了一种温和的光化学氢化过程,通过使用 Co 基催化剂,可将 CO2 转化为碳纳米管(CNTs)和 H2O。因此,宇航员可以从二氧化碳代谢中提取氧气,从而完成氧气回收循环(总反应:CO2 → C + O2),使理论氧气回收率达到 100%。在流动反应器中进行 100 小时的反应期间,这种光化学技术使 CNT 的形成达到 240 的高周转数(Co 与 Co 的摩尔比)。当使用流动的二氧化碳和 H2 时,氧气回收效率达到约 68%,超过了国际空间站结合水电解进行的萨巴蒂尔反应的理论最大值(50%)。除了在太空中制造碳纳米管外,碳纳米管的尖端生长模式主要允许从二氧化碳中长期回收氧气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Temperature-dependent solid electrolyte interphase reactions drive performance in lithium-mediated nitrogen reduction to ammonia A universal approach to high-performance thermoelectric module design for power generation In situ hydrogen generation from underground fossil hydrocarbons Interlayer-expanded carbon anodes with exceptional rates and long-term cycling via kinetically decoupled carbonization In situ electrochemical regeneration of permanganate ion for sustainable oxidation reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1