{"title":"Study on the electrical performance degradation mechanism of β -Ga2O3 p-n diode under heavy ion radiation","authors":"Shaozhong Yue, Xuefeng Zheng, Fang Zhang, Danmei Lin, Sijie Bu, Yingzhe Wang, Peipei Hu, Jie Liu, Weidong Zhang, Jianfu Zhang, Xiaohua Ma, Yue Hao","doi":"10.1063/5.0229345","DOIUrl":null,"url":null,"abstract":"The impact of heavy ion irradiation on the β-Ga2O3 p-n diode and its physical mechanism have been studied in this Letter. After the irradiation fluence of 1 × 108 cm−2, it is observed that the electrical performance of the device is significantly degraded. The forward current density (JF) is reduced by 49.4%, the reverse current density (JR) is increased by more than two orders of magnitude, and the breakdown voltage (VBR) is decreased by 30%. Based on the results of the deep-level transient spectroscopy measurement, it is concluded that acceptor-like traps generated with an energy level of EC-0.75 eV in the β-Ga2O3 drift layer dominate the JF degradation of the device, which are most likely related to Ga vacancies. These acceptor-like traps result in the reduction of change carrier concentration, which in turn leads to a decrease in JF. In addition, according to the conductive atomic force microscope measurements and theoretical calculation, it is clearly observed that the latent tracks induced by heavy ion irradiation can act as leakage paths, leading to a significant degradation of JR and VBR.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0229345","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of heavy ion irradiation on the β-Ga2O3 p-n diode and its physical mechanism have been studied in this Letter. After the irradiation fluence of 1 × 108 cm−2, it is observed that the electrical performance of the device is significantly degraded. The forward current density (JF) is reduced by 49.4%, the reverse current density (JR) is increased by more than two orders of magnitude, and the breakdown voltage (VBR) is decreased by 30%. Based on the results of the deep-level transient spectroscopy measurement, it is concluded that acceptor-like traps generated with an energy level of EC-0.75 eV in the β-Ga2O3 drift layer dominate the JF degradation of the device, which are most likely related to Ga vacancies. These acceptor-like traps result in the reduction of change carrier concentration, which in turn leads to a decrease in JF. In addition, according to the conductive atomic force microscope measurements and theoretical calculation, it is clearly observed that the latent tracks induced by heavy ion irradiation can act as leakage paths, leading to a significant degradation of JR and VBR.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.