Chuan-Lin Xiao , Nai-Hao Ji , Ping Wang , Jing-Ru He , Xiang Wang , Long Li
{"title":"Crop diversity significantly enhances soil carbon sequestration via alleviating soil inorganic carbon decline caused by rhizobium inoculation","authors":"Chuan-Lin Xiao , Nai-Hao Ji , Ping Wang , Jing-Ru He , Xiang Wang , Long Li","doi":"10.1016/j.still.2024.106286","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing crop diversity and nitrogen (N) fertilizer application have been identified as effective strategies for enhancing productivity and soil organic carbon (SOC) storage in agroecosystems. However, the impact of these management practices on soil inorganic carbon (SIC) in agroecosystems remains unclear. At present, we evaluated the effects of maize/faba bean intercropping, N application rates, and inoculation rhizobia of faba bean on SIC in the top 20 cm of soil depth using a 13-year crop diversity field experiment. Our results showed that the soil total carbon (TC) content increased significantly by 5.9 % and 7.0 % compared to faba bean monoculture and maize monoculture, respectively, after 13 years of continuous intercropping. Intercropping increased the pedogenic carbonate (PIC) content by 36.7 %, resulting in an 8.9 % higher SIC content compared to faba bean monoculture. Additionally, intercropping significantly reduced the dissolution of lithogenic carbonate (LIC) by 17.5 %, leading to a 7.6 % higher SIC content compared to maize monoculture. The formation of PIC was associated with an increase in soil available cations especially Ca<sup>2+</sup> in intercropping. The conservation of LIC was related to the higher soil available Mg<sup>2+</sup> in intercropping than monoculture. Faba bean inoculated with rhizobia significantly decreased SIC content due to soil acidification after 13 years of continuous cropping. Intercropping also significantly increased SOC and C3-derived SOC content compared to maize monoculture and increased C4-derived SOC content compared with faba bean monoculture. Soil organic carbon showed a positive correlation with SIC across all cropping systems, and the SOC fractions could affect the neoformation of PIC and dissolution of LIC. Our results demonstrate that intercropping can increase SIC content, which further promotes soil carbon sequestration. This study highlights the significance of increasing crop diversity on cropland carbon sequestration and provides practical implications for mitigating carbon emissions.</p></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"245 ","pages":"Article 106286"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167198724002873/pdfft?md5=45bcf4250bb58e2cae06d2381e636ea9&pid=1-s2.0-S0167198724002873-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724002873","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing crop diversity and nitrogen (N) fertilizer application have been identified as effective strategies for enhancing productivity and soil organic carbon (SOC) storage in agroecosystems. However, the impact of these management practices on soil inorganic carbon (SIC) in agroecosystems remains unclear. At present, we evaluated the effects of maize/faba bean intercropping, N application rates, and inoculation rhizobia of faba bean on SIC in the top 20 cm of soil depth using a 13-year crop diversity field experiment. Our results showed that the soil total carbon (TC) content increased significantly by 5.9 % and 7.0 % compared to faba bean monoculture and maize monoculture, respectively, after 13 years of continuous intercropping. Intercropping increased the pedogenic carbonate (PIC) content by 36.7 %, resulting in an 8.9 % higher SIC content compared to faba bean monoculture. Additionally, intercropping significantly reduced the dissolution of lithogenic carbonate (LIC) by 17.5 %, leading to a 7.6 % higher SIC content compared to maize monoculture. The formation of PIC was associated with an increase in soil available cations especially Ca2+ in intercropping. The conservation of LIC was related to the higher soil available Mg2+ in intercropping than monoculture. Faba bean inoculated with rhizobia significantly decreased SIC content due to soil acidification after 13 years of continuous cropping. Intercropping also significantly increased SOC and C3-derived SOC content compared to maize monoculture and increased C4-derived SOC content compared with faba bean monoculture. Soil organic carbon showed a positive correlation with SIC across all cropping systems, and the SOC fractions could affect the neoformation of PIC and dissolution of LIC. Our results demonstrate that intercropping can increase SIC content, which further promotes soil carbon sequestration. This study highlights the significance of increasing crop diversity on cropland carbon sequestration and provides practical implications for mitigating carbon emissions.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.