Srinadh Reddy Bhavanam, Sumohana S. Channappayya, Srijith P. K, Shantanu Desai
{"title":"Enhanced astronomical source classification with integration of attention mechanisms and vision transformers","authors":"Srinadh Reddy Bhavanam, Sumohana S. Channappayya, Srijith P. K, Shantanu Desai","doi":"10.1007/s10509-024-04357-9","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate classification of celestial objects is essential for advancing our understanding of the universe. MargNet is a recently developed deep learning-based classifier applied to the Sloan Digital Sky Survey (SDSS) Data Release 16 (DR16) dataset to segregate stars, quasars, and compact galaxies using photometric data. MargNet utilizes a stacked architecture, combining a Convolutional Neural Network (CNN) for image modelling and an Artificial Neural Network (ANN) for modelling photometric parameters. Notably, MargNet focuses exclusively on compact galaxies and outperforms other methods in classifying compact galaxies from stars and quasars, even at fainter magnitudes. In this study, we propose enhancing MargNet’s performance by incorporating attention mechanisms and Vision Transformer (ViT)-based models for processing image data. The attention mechanism allows the model to focus on relevant features and capture intricate patterns within images, effectively distinguishing between different classes of celestial objects. Additionally, we leverage ViTs, a transformer-based deep learning architecture renowned for exceptional performance in image classification tasks. We enhance the model’s understanding of complex astronomical images by utilizing ViT’s ability to capture global dependencies and contextual information. Our approach uses a curated dataset comprising 240,000 compact and 150,000 faint objects. The models learn classification directly from the data, minimizing human intervention. Furthermore, we explore ViT as a hybrid architecture that uses photometric features and images together as input to predict astronomical objects. Our results demonstrate that the proposed attention mechanism augmented CNN in MargNet marginally outperforms the traditional MargNet and the proposed ViT-based MargNet models. Additionally, the ViT-based hybrid model emerges as the most lightweight and easy-to-train model with classification accuracy similar to that of the best-performing attention-enhanced MargNet. This advancement in deep learning will contribute to greater success in identifying objects in upcoming surveys like the Vera C. Rubin Large Synoptic Survey Telescope.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04357-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate classification of celestial objects is essential for advancing our understanding of the universe. MargNet is a recently developed deep learning-based classifier applied to the Sloan Digital Sky Survey (SDSS) Data Release 16 (DR16) dataset to segregate stars, quasars, and compact galaxies using photometric data. MargNet utilizes a stacked architecture, combining a Convolutional Neural Network (CNN) for image modelling and an Artificial Neural Network (ANN) for modelling photometric parameters. Notably, MargNet focuses exclusively on compact galaxies and outperforms other methods in classifying compact galaxies from stars and quasars, even at fainter magnitudes. In this study, we propose enhancing MargNet’s performance by incorporating attention mechanisms and Vision Transformer (ViT)-based models for processing image data. The attention mechanism allows the model to focus on relevant features and capture intricate patterns within images, effectively distinguishing between different classes of celestial objects. Additionally, we leverage ViTs, a transformer-based deep learning architecture renowned for exceptional performance in image classification tasks. We enhance the model’s understanding of complex astronomical images by utilizing ViT’s ability to capture global dependencies and contextual information. Our approach uses a curated dataset comprising 240,000 compact and 150,000 faint objects. The models learn classification directly from the data, minimizing human intervention. Furthermore, we explore ViT as a hybrid architecture that uses photometric features and images together as input to predict astronomical objects. Our results demonstrate that the proposed attention mechanism augmented CNN in MargNet marginally outperforms the traditional MargNet and the proposed ViT-based MargNet models. Additionally, the ViT-based hybrid model emerges as the most lightweight and easy-to-train model with classification accuracy similar to that of the best-performing attention-enhanced MargNet. This advancement in deep learning will contribute to greater success in identifying objects in upcoming surveys like the Vera C. Rubin Large Synoptic Survey Telescope.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.