Fabrication and Characterization of PZT Thick Film Microstructure and T-Shaped Generator by Electrohydrodynamic Jet Printing

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-12 DOI:10.1021/acsaelm.4c01054
Kuipeng Zhao, Peilin Li, Dongming Li, Liangkun Lu, Feng Wang, Ying Gao, Ziyi Shan
{"title":"Fabrication and Characterization of PZT Thick Film Microstructure and T-Shaped Generator by Electrohydrodynamic Jet Printing","authors":"Kuipeng Zhao, Peilin Li, Dongming Li, Liangkun Lu, Feng Wang, Ying Gao, Ziyi Shan","doi":"10.1021/acsaelm.4c01054","DOIUrl":null,"url":null,"abstract":"This paper presents the use of electrohydrodynamic jet (E-jet) printing technology for fabricating PZT thick film microstructures directly on substrate surfaces. The resolution of a single-layer thickness of 0.5 μm is about 40 times that of the screen printing and casting methods. The minimum microstructure gap of 10 μm is comparable to that of wet etching. Flexible control of microstructural functional characteristics and dimensions can be achieved. The 10 μm thickness “T” shape microstructure was printed on the flexible titanium alloy substrate by electrohydrodynamic jet printing technology. The beam-type generator was formed by a high-temperature cofiring process, which avoided the problems of adhesive accuracy and adhesive layer creep introduced by the adhesive process. XRD spectra confirm that the printed thick films crystallize into a standard perovskite structure at high temperatures without any impurities. The microstructure at this scale has good flexible deformation. The piezoelectric generator demonstrates a unit volume power generation of 0.26 × 10<sup>–4</sup> mV/μm<sup>3</sup>, roughly three times that of piezoelectric ceramic generators produced by spin coating. After 3000 vibration cycles, the output voltage of the generator remains stable, confirming the reliability of the printed microstructures and the potential of electrohydrodynamic jet printing in device applications.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c01054","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the use of electrohydrodynamic jet (E-jet) printing technology for fabricating PZT thick film microstructures directly on substrate surfaces. The resolution of a single-layer thickness of 0.5 μm is about 40 times that of the screen printing and casting methods. The minimum microstructure gap of 10 μm is comparable to that of wet etching. Flexible control of microstructural functional characteristics and dimensions can be achieved. The 10 μm thickness “T” shape microstructure was printed on the flexible titanium alloy substrate by electrohydrodynamic jet printing technology. The beam-type generator was formed by a high-temperature cofiring process, which avoided the problems of adhesive accuracy and adhesive layer creep introduced by the adhesive process. XRD spectra confirm that the printed thick films crystallize into a standard perovskite structure at high temperatures without any impurities. The microstructure at this scale has good flexible deformation. The piezoelectric generator demonstrates a unit volume power generation of 0.26 × 10–4 mV/μm3, roughly three times that of piezoelectric ceramic generators produced by spin coating. After 3000 vibration cycles, the output voltage of the generator remains stable, confirming the reliability of the printed microstructures and the potential of electrohydrodynamic jet printing in device applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用电流体动力喷射打印技术制造 PZT 厚膜微结构和 T 型发电机并确定其特性
本文介绍了利用电流体动力喷射(E-jet)印刷技术直接在基材表面制造 PZT 厚膜微结构的方法。单层厚度为 0.5 μm 的分辨率约为丝网印刷和铸造方法的 40 倍。10 μm 的最小微结构间隙与湿法蚀刻相当。可以实现对微结构功能特性和尺寸的灵活控制。采用电流体动力喷射打印技术在柔性钛合金基底上打印出厚度为 10 μm 的 "T "形微结构。束型发生器是通过高温共烧工艺形成的,避免了粘合工艺带来的粘合精度和粘合层蠕变问题。XRD 光谱证实,印刷厚膜在高温下结晶成标准的包晶体结构,不含任何杂质。这种尺度的微观结构具有良好的柔性变形能力。压电发生器的单位体积发电量为 0.26 × 10-4 mV/μm3,大约是旋涂法生产的压电陶瓷发生器的三倍。经过 3000 次振动周期后,发生器的输出电压保持稳定,证实了印刷微结构的可靠性以及电流体动力喷射印刷在设备应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Issue Publication Information Issue Editorial Masthead Imitation of a Dual-Modal Synapse Based on a Hf0.5Zr0.5O2 Ferroelectric Tunnel Junction for Neuromorphic Computing Effects of Halide Composition on Endurance and Retention Performance in Double Perovskite Resistive Switching Memory Experimental and Theoretical Approaches for Detecting Latent Lateral Leakage Current of Organic Light-Emitting Diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1