Transmission Electron Microscopy Studies of Bufferless Epitaxial GeSn on (0001) Sapphire

IF 4.3 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-09-05 DOI:10.1109/JSTQE.2024.3454954
Jiechao Jiang;Nonso Martin Chetuya;Joseph H Ngai;Gordon J. Grzybowski;Efstathios I. Meletis
{"title":"Transmission Electron Microscopy Studies of Bufferless Epitaxial GeSn on (0001) Sapphire","authors":"Jiechao Jiang;Nonso Martin Chetuya;Joseph H Ngai;Gordon J. Grzybowski;Efstathios I. Meletis","doi":"10.1109/JSTQE.2024.3454954","DOIUrl":null,"url":null,"abstract":"Epitaxial growth of GeSn films directly on (0001) sapphire substrates, has not been considered as a feasible task. Here, an ultra-thin and a 1 μm thick Ge\n<sub>1-x</sub>\nSn\n<sub>x</sub>\n (x≤0.1) film were deposited on (0001) sapphire substrates at 475 °C and 367 °C, respectively, through remote plasma-enhanced chemical vapor deposition (RPECVD). The ultra-thin Ge\n<sub>1-x</sub>\nSn\n<sub>x</sub>\n film (deposited at 475 °C) exhibits a distinct epitaxial/twin mushroom-like island morphology with a height ranging from 30-45 nm and a lateral width ranging from 40 - 200 nm. The Ge\n<sub>1-x</sub>\nSn\n<sub>x</sub>\n islands are covered by a ∼4 nm thick surface layer of Sn-rich amorphous material and present an atomically sharp and robust interface with the substrate. The epitaxial Ge\n<sub>1-x</sub>\nSn\n<sub>x</sub>\n lattices coherently join with the Al layer of the sapphire substrate. The 1 μm thick Ge\n<sub>1-x</sub>\nSn\n<sub>x</sub>\n film (deposited at 367 °C) consists of a thin epitaxial/twin layer below a nanocrystalline columnar layer. The nanocrystalline grains have varying Sn content that exceeds that in the epitaxial structure. The epitaxial/twin layer in this film has an ∼1 nm thick highly disrupted near amorphous layer at the interface. Quasiperiodic, two-dimensional hexagonal networks of misfit dislocations are formed at the interfaces of both films to accommodate the misfit strain. The dislocation periodic length was 13.3 Å and 13.1 Å for the films deposited at 475 °C and 367 °C, respectively. The epitaxial structures in both films have an identical orientation relationship of (111)\n<sub>GeSn</sub>\n//(0001)\n<sub>Sapphire</sub>\n, \n<inline-formula><tex-math>$[ {1\\bar{1}0} ]$</tex-math></inline-formula>\n<sub>GeSn</sub>\n//\n<inline-formula><tex-math>$[ {2\\bar{1}\\bar{1}0} ]$</tex-math></inline-formula>\n<sub>Sapphire</sub>\n, \n<inline-formula><tex-math>$[ {21\\bar{1}} ]$</tex-math></inline-formula>\n<sub>GeSn</sub>\n//\n<inline-formula><tex-math>$[ {1\\bar{1}00} ]$</tex-math></inline-formula>\n<sub>Sapphire</sub>\n with the substrate, exhibiting lattice mismatches of ∼15% between the (220) GeSn and the \n<inline-formula><tex-math>$( {11\\bar{2}0} )$</tex-math></inline-formula>\n Al\n<sub>2</sub>\nO\n<sub>3</sub>\n along the interface plane and -24% between the (111) GeSn and the (0003) Al\n<sub>2</sub>\nO\n<sub>3</sub>\n planes along the film growth direction. The observed microstructures provide valuable feedback that can be used to optimize the RPECVD process for better quality epitaxial GeSn on (0001) sapphire substrates with no buffer layer required.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 1: SiGeSn Infrared Photon. and Quantum Electronics","pages":"1-12"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10666161/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Epitaxial growth of GeSn films directly on (0001) sapphire substrates, has not been considered as a feasible task. Here, an ultra-thin and a 1 μm thick Ge 1-x Sn x (x≤0.1) film were deposited on (0001) sapphire substrates at 475 °C and 367 °C, respectively, through remote plasma-enhanced chemical vapor deposition (RPECVD). The ultra-thin Ge 1-x Sn x film (deposited at 475 °C) exhibits a distinct epitaxial/twin mushroom-like island morphology with a height ranging from 30-45 nm and a lateral width ranging from 40 - 200 nm. The Ge 1-x Sn x islands are covered by a ∼4 nm thick surface layer of Sn-rich amorphous material and present an atomically sharp and robust interface with the substrate. The epitaxial Ge 1-x Sn x lattices coherently join with the Al layer of the sapphire substrate. The 1 μm thick Ge 1-x Sn x film (deposited at 367 °C) consists of a thin epitaxial/twin layer below a nanocrystalline columnar layer. The nanocrystalline grains have varying Sn content that exceeds that in the epitaxial structure. The epitaxial/twin layer in this film has an ∼1 nm thick highly disrupted near amorphous layer at the interface. Quasiperiodic, two-dimensional hexagonal networks of misfit dislocations are formed at the interfaces of both films to accommodate the misfit strain. The dislocation periodic length was 13.3 Å and 13.1 Å for the films deposited at 475 °C and 367 °C, respectively. The epitaxial structures in both films have an identical orientation relationship of (111) GeSn //(0001) Sapphire , $[ {1\bar{1}0} ]$ GeSn // $[ {2\bar{1}\bar{1}0} ]$ Sapphire , $[ {21\bar{1}} ]$ GeSn // $[ {1\bar{1}00} ]$ Sapphire with the substrate, exhibiting lattice mismatches of ∼15% between the (220) GeSn and the $( {11\bar{2}0} )$ Al 2 O 3 along the interface plane and -24% between the (111) GeSn and the (0003) Al 2 O 3 planes along the film growth direction. The observed microstructures provide valuable feedback that can be used to optimize the RPECVD process for better quality epitaxial GeSn on (0001) sapphire substrates with no buffer layer required.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
(0001) 蓝宝石上无缓冲外延 GeSn 的透射电子显微镜研究
在 (0001) 蓝宝石衬底上直接外延生长 GeSn 薄膜一直被认为是不可行的。在此,通过远程等离子体增强化学气相沉积(RPECVD)技术,分别在 475 ℃ 和 367 ℃ 下在 (0001) 蓝宝石基底上沉积了超薄和 1 μm 厚的 Ge1-xSnx (x≤0.1) 薄膜。超薄 Ge1-xSnx 薄膜(在 475 ℃ 下沉积)呈现出明显的外延/双蘑菇状岛形态,高度在 30-45 nm 之间,横向宽度在 40-200 nm 之间。Ge1-xSnx 岛被 4 nm 厚的富含锡的非晶材料表层所覆盖,并与基底形成了原子级的锐利而坚固的界面。外延 Ge1-xSnx 晶格与蓝宝石衬底的铝层连成一体。厚度为 1 μm 的 Ge1-xSnx 薄膜(沉积温度为 367 °C)由纳米晶柱状层下面的薄外延/孪晶层组成。纳米晶粒的锡含量各不相同,超过了外延结构中的含量。该薄膜中的外延/孪晶层在界面处有一个 1 纳米厚的高度紊乱的近非晶层。在两层薄膜的界面上形成了准周期的二维六边形错位网络,以适应错位应变。在 475 °C 和 367 °C 下沉积的薄膜的位错周期长度分别为 13.3 Å 和 13.1 Å。两层薄膜的外延结构具有相同的取向关系:(111)GeSn//(0001)蓝宝石,$[ {1\bar{1}0} ]$GeSn/$[ {2\bar{1}\bar{1}0} ]$ 蓝宝石,$[ {21\bar{1}} ]$GeSn/$[ {1\bar{1}00} ]$ 蓝宝石与基底、沿界面平面,(220) GeSn 和 $( {11\bar{2}0} )$ Al2O3 之间的晶格失配为 15%,沿薄膜生长方向,(111) GeSn 和 (0003) Al2O3 平面之间的晶格失配为 -24%。观察到的微观结构提供了宝贵的反馈信息,可用于优化 RPECVD 工艺,从而在 (0001) 蓝宝石衬底上获得更高质量的 GeSn 外延,且无需缓冲层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Selected Topics in Quantum Electronics
IEEE Journal of Selected Topics in Quantum Electronics 工程技术-工程:电子与电气
CiteScore
10.60
自引率
2.00%
发文量
212
审稿时长
3 months
期刊介绍: Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.
期刊最新文献
Design of the Waveguide Integrated GeSn PDs on a SiN Platform in $2\,\mathrm{\mu m}$ Wavelength Band Lasing of Quantum-Dot Micropillar Lasers Under Elevated Temperatures A Formal Scheme of Fault Injection on Coherent Integrated Photonic Neural Networks Electrically Pumped GeSn Micro-Ring Lasers Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1