Progress in the Application of Emerging Technology for the Improvement of Starch-Based Active Packaging Properties: A Review

IF 2.6 Q2 FOOD SCIENCE & TECHNOLOGY ACS food science & technology Pub Date : 2024-08-14 DOI:10.1021/acsfoodscitech.4c00260
Bara Yudhistira, Naila Husnayain, Fuangfah Punthi, Mohsen Gavahian, Chao-Kai Chang, Chang-Wei Hsieh
{"title":"Progress in the Application of Emerging Technology for the Improvement of Starch-Based Active Packaging Properties: A Review","authors":"Bara Yudhistira, Naila Husnayain, Fuangfah Punthi, Mohsen Gavahian, Chao-Kai Chang, Chang-Wei Hsieh","doi":"10.1021/acsfoodscitech.4c00260","DOIUrl":null,"url":null,"abstract":"Natural food packaging methods have been developed to overcome the reliance on plastic packaging and align with sustainable development goals (SDGs), and it is necessary to develop biodegradable packaging. Starch is an alternative natural packaging material with numerous excellent properties. In this review, we focus on starch as a material for the development of biodegradable active packaging. However, the method still has significant limitations, and active studies are ongoing to unravel new and improved starch-based packaging strategies. Integrating active starch-based methods with emerging technologies in food packaging reduces adverse effects on the environment. In this review, we first introduce the role of emerging technologies, such as cold plasma, high-pressure processing (HPP), ultrasound, and pulsed electric field (PEF), in improving the properties of starch-based active packaging. These emerging technologies have enhanced the optical, physical, and thermal properties of starch-based active packaging. An up-to-date review explaining the potential of starch-based packaging, the use of emerging technologies in its preparation, and the application of this packaging in plant- and animal-based products is thoroughly discussed. The meta-analysis reported in this study can be used to address the challenges and applications of starch-based packaging in the future.","PeriodicalId":72048,"journal":{"name":"ACS food science & technology","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS food science & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsfoodscitech.4c00260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Natural food packaging methods have been developed to overcome the reliance on plastic packaging and align with sustainable development goals (SDGs), and it is necessary to develop biodegradable packaging. Starch is an alternative natural packaging material with numerous excellent properties. In this review, we focus on starch as a material for the development of biodegradable active packaging. However, the method still has significant limitations, and active studies are ongoing to unravel new and improved starch-based packaging strategies. Integrating active starch-based methods with emerging technologies in food packaging reduces adverse effects on the environment. In this review, we first introduce the role of emerging technologies, such as cold plasma, high-pressure processing (HPP), ultrasound, and pulsed electric field (PEF), in improving the properties of starch-based active packaging. These emerging technologies have enhanced the optical, physical, and thermal properties of starch-based active packaging. An up-to-date review explaining the potential of starch-based packaging, the use of emerging technologies in its preparation, and the application of this packaging in plant- and animal-based products is thoroughly discussed. The meta-analysis reported in this study can be used to address the challenges and applications of starch-based packaging in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用新兴技术改善淀粉基活性包装性能的进展:综述
为了克服对塑料包装的依赖并与可持续发展目标(SDGs)保持一致,有必要开发可生物降解的包装。淀粉是一种可供选择的天然包装材料,具有众多优良特性。在本综述中,我们将重点关注淀粉作为开发可生物降解活性包装的材料。然而,这种方法仍有很大的局限性,目前正在进行积极的研究,以探索新的和改进的淀粉基包装策略。将基于淀粉的活性方法与食品包装的新兴技术相结合,可减少对环境的不利影响。在本综述中,我们首先介绍了冷等离子体、高压处理(HPP)、超声波和脉冲电场(PEF)等新兴技术在改善淀粉基活性包装性能方面的作用。这些新兴技术提高了淀粉基活性包装的光学、物理和热性能。本研究对淀粉基包装的潜力、新兴技术在其制备过程中的应用以及这种包装在植物和动物产品中的应用进行了深入探讨。本研究报告中的荟萃分析可用于应对淀粉基包装在未来的挑战和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Sugar Cane Glycoproteins: an Alternative to Improve the Production of Xanthan Gum by Xanthomonas albilineans Utilization of Lacticaseibacillus rhamnosus and Pediococcus pentosaceus Cofermentation on Potato for Juice and High-Fiber Powder Production: An Innovative Approach for Pilot Scale Manufacturing A Novel Chiral Amino Acid-Based Methodology for Authenticity and Origin Determination of Chinese Wines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1