{"title":"Model of Breakdown of MOS-Structures by the Mechanism of Anode Hydrogen Release","authors":"O. V. Aleksandrov","doi":"10.1134/s1063782624030011","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A quantitative model of the breakdown of MOS-structures with relatively thick (10–100 nm) gate dielectric by the mechanism of anode hydrogen release from interphase boundary Si-SiO<sub>2</sub> is proposed. The breakdown delay time is determined by dispersion transport and accumulation of hydrogen ions in the gate dielectric. It is shown that at a high concentration of hydrogen in MOS structures and electric field strength of less than ~10 MV/cm, the model satisfactorily describes breakdown delay times significantly shorter than those expected from the 1/<i>E</i> model. At higher field strengths, the breakdown is described by the anode hole injection model.</p>","PeriodicalId":21760,"journal":{"name":"Semiconductors","volume":"203 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063782624030011","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
A quantitative model of the breakdown of MOS-structures with relatively thick (10–100 nm) gate dielectric by the mechanism of anode hydrogen release from interphase boundary Si-SiO2 is proposed. The breakdown delay time is determined by dispersion transport and accumulation of hydrogen ions in the gate dielectric. It is shown that at a high concentration of hydrogen in MOS structures and electric field strength of less than ~10 MV/cm, the model satisfactorily describes breakdown delay times significantly shorter than those expected from the 1/E model. At higher field strengths, the breakdown is described by the anode hole injection model.
期刊介绍:
Publishes the most important work in semiconductor research in the countries of the former Soviet Union. Covers semiconductor theory, transport phenomena in semiconductors, optics, magnetooptics, and electrooptics of semiconductors, semiconductor lasers and semiconductor surface physics. The journal features an extensive book review section.