Plasma Enhanced Atomic Layer Deposition of InP Layers and Multilayer InP/GaP Structures on Si Substrate

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER Semiconductors Pub Date : 2024-09-02 DOI:10.1134/s1063782624020076
A. S. Gudovskikh, A. V. Uvarov, A. I. Baranov, E. A. Vyacheslavova, A. A. Maksimova, D. A. Kirilenko
{"title":"Plasma Enhanced Atomic Layer Deposition of InP Layers and Multilayer InP/GaP Structures on Si Substrate","authors":"A. S. Gudovskikh, A. V. Uvarov, A. I. Baranov, E. A. Vyacheslavova, A. A. Maksimova, D. A. Kirilenko","doi":"10.1134/s1063782624020076","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>For the first time, InP layers were grown on Si substrates at a temperature of 380°C using the plasma-enhanced atomic layer deposition. According to X-ray diffraction analysis and transmission electron microscopy, the layers are microcrystalline with a grain size of 20–30 nm and a preferred orientation (111). Raman spectra exhibit clearly distinguish the LO peak at 341.9 cm<sup>–1</sup>, which is characteristic of crystalline InP. Microcrystalline InP layers grown on fused silica substrates demonstrated a high photoconductivity of 2.3 Ω<sup>–1</sup> cm<sup>–1</sup> under solar spectrum AM1.5G (100 mW/cm<sup>2</sup>) illumination. The study of the growth of layers of binary compounds InP and GaP in one process of plasma-enhanced atomic layer deposition demonstrated the fundamental possibility of controlling the composition of InP/GaP digital alloy. The InP/GaP digital alloys are characterized by the coalescence of the LO peaks of InP (341.9 cm<sup>–1</sup>) and GaP (365 cm<sup>–1</sup>) in the Raman spectra. Increase of GaP component in the layer leads to boarding of this feature in the Raman spectra due to a shift of the edge towards the GaP peak (402 cm<sup>–1</sup>). A study of the optical properties by transmission and reflection measurements of microcrystalline InP/GaP digital alloy layers deposited on transparent substrates demonstrated the possibility of varying the optical gap in the range of 1.3–2 eV.</p>","PeriodicalId":21760,"journal":{"name":"Semiconductors","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063782624020076","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

For the first time, InP layers were grown on Si substrates at a temperature of 380°C using the plasma-enhanced atomic layer deposition. According to X-ray diffraction analysis and transmission electron microscopy, the layers are microcrystalline with a grain size of 20–30 nm and a preferred orientation (111). Raman spectra exhibit clearly distinguish the LO peak at 341.9 cm–1, which is characteristic of crystalline InP. Microcrystalline InP layers grown on fused silica substrates demonstrated a high photoconductivity of 2.3 Ω–1 cm–1 under solar spectrum AM1.5G (100 mW/cm2) illumination. The study of the growth of layers of binary compounds InP and GaP in one process of plasma-enhanced atomic layer deposition demonstrated the fundamental possibility of controlling the composition of InP/GaP digital alloy. The InP/GaP digital alloys are characterized by the coalescence of the LO peaks of InP (341.9 cm–1) and GaP (365 cm–1) in the Raman spectra. Increase of GaP component in the layer leads to boarding of this feature in the Raman spectra due to a shift of the edge towards the GaP peak (402 cm–1). A study of the optical properties by transmission and reflection measurements of microcrystalline InP/GaP digital alloy layers deposited on transparent substrates demonstrated the possibility of varying the optical gap in the range of 1.3–2 eV.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在硅基底上等离子体增强原子层沉积 InP 层和多层 InP/GaP 结构
摘要 利用等离子体增强原子层沉积技术,首次在 380°C 的温度下在硅衬底上生长出 InP 层。根据 X 射线衍射分析和透射电子显微镜观察,该层为微晶,晶粒大小为 20-30 纳米,优先取向为 111。拉曼光谱清楚地显示出 341.9 cm-1 处的 LO 峰,这是晶体 InP 的特征。在熔融石英基底上生长的微晶 InP 层在太阳光谱 AM1.5G(100 mW/cm2)照射下显示出 2.3 Ω-1 cm-1 的高光电导率。在等离子体增强原子层沉积的一个过程中,对二元化合物 InP 和 GaP 的层生长进行的研究表明,控制 InP/GaP 数字合金的成分具有根本的可能性。InP/GaP 数字合金的特征是拉曼光谱中 InP(341.9 cm-1)和 GaP(365 cm-1)的 LO 峰聚合。由于拉曼光谱中的 GaP 峰(402 cm-1)边缘向 GaP 峰移动,因此层中 GaP 成分的增加会导致这一特征的消失。通过对沉积在透明基底上的微晶 InP/GaP 数字合金层进行透射和反射测量来研究其光学特性,证明了在 1.3-2 eV 范围内改变光隙的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Semiconductors
Semiconductors 物理-物理:凝聚态物理
CiteScore
1.50
自引率
28.60%
发文量
131
审稿时长
3-6 weeks
期刊介绍: Publishes the most important work in semiconductor research in the countries of the former Soviet Union. Covers semiconductor theory, transport phenomena in semiconductors, optics, magnetooptics, and electrooptics of semiconductors, semiconductor lasers and semiconductor surface physics. The journal features an extensive book review section.
期刊最新文献
Luminescence in p–i–n Structures with Compensated Quantum Wells Structure and Self-Modulation Features of the Superradiant States in Asymmetric Fabry–Perot Cavity Mechanisms of Optical Gain in Heavily Doped AlxGa1 – xN:Si Structures (x = 0.56–1) Spatial Inhomogeneity of Impact-Ionization Switching Process in Power Si Diode Effect of Electric Field on Excitons in a Quantum Well under Additional Optical Excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1