{"title":"Assessment of Warionia saharea Essential Oil as a Green Corrosion Inhibitor for Mild Steel in HCl: Experimental and Computational Studies","authors":"Abdeslam Ansari, Youssef Youssefi, Mohamed Tanghourte, Nazih Ouassou, Nazih Asoufar, Mohamed Znini, Hassane Lgaz, El Houssine Mabrouk, Mohamed Azrour, Han-Seung Lee, Belkheir Hammouti","doi":"10.3390/coatings14091164","DOIUrl":null,"url":null,"abstract":"The objective of this research work is the study of the inhibitory effect of Warionia saharea essential oil (WSEO) on the corrosion of mild steel (MS) in molar HCl solution, employing both experimental and theoretical methods. This inhibitory effect (IE) has been evaluated by using a combination of weight loss measurements (LW) and various electrochemical methods, such as open circuit potential (OCP), potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) experiments. The LW results indicated that IE increased with inhibitor concentration, reaching 83.34% at 3.00 g/L. The PDP analysis suggested that WSEO functions as a mixed inhibitor, while in the EIS results the Rct values increased with inhibitor concentration to reach 165.8 Ω cm2 at 2.00 g/L, suggesting a defensive film formation by WSEO molecules over the metallic surface. The thermodynamic study demonstrated that the WSEO molecules adsorption on the MS surface followed a Langmuir isotherm, involving mixed physical and chemical (physicochemical) adsorption on the MS surface. Theoretical methods, including density functional theory (DFT) and molecular dynamics (MD) simulations, were employed to elucidate the inhibition mechanisms of the three main components of WSEO. The quantum chemical analysis, using density functional theory (DFT) and molecular dynamics (MD) simulations, showed a low ΔEgap value of 6.30 eV and a low adsorption energy (Eads) value on an Fe (110) substrate of −258 Kcal/mol for (E)-Nerolidol, indicating the significant contribution of this molecule to the overall corrosion inhibition effect of WSEO. The scanning electron microscope (SEM) analysis verified the presence of a protective film formed by the inhibitor on the MS surface. This study highlights the potential of WSEO as a sustainable and green corrosion inhibitor in acidic environments.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"47 26 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091164","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this research work is the study of the inhibitory effect of Warionia saharea essential oil (WSEO) on the corrosion of mild steel (MS) in molar HCl solution, employing both experimental and theoretical methods. This inhibitory effect (IE) has been evaluated by using a combination of weight loss measurements (LW) and various electrochemical methods, such as open circuit potential (OCP), potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) experiments. The LW results indicated that IE increased with inhibitor concentration, reaching 83.34% at 3.00 g/L. The PDP analysis suggested that WSEO functions as a mixed inhibitor, while in the EIS results the Rct values increased with inhibitor concentration to reach 165.8 Ω cm2 at 2.00 g/L, suggesting a defensive film formation by WSEO molecules over the metallic surface. The thermodynamic study demonstrated that the WSEO molecules adsorption on the MS surface followed a Langmuir isotherm, involving mixed physical and chemical (physicochemical) adsorption on the MS surface. Theoretical methods, including density functional theory (DFT) and molecular dynamics (MD) simulations, were employed to elucidate the inhibition mechanisms of the three main components of WSEO. The quantum chemical analysis, using density functional theory (DFT) and molecular dynamics (MD) simulations, showed a low ΔEgap value of 6.30 eV and a low adsorption energy (Eads) value on an Fe (110) substrate of −258 Kcal/mol for (E)-Nerolidol, indicating the significant contribution of this molecule to the overall corrosion inhibition effect of WSEO. The scanning electron microscope (SEM) analysis verified the presence of a protective film formed by the inhibitor on the MS surface. This study highlights the potential of WSEO as a sustainable and green corrosion inhibitor in acidic environments.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material