Influence of the Dispersion of Carbon Nanotubes on the Electrical Conductivity, Adhesion Strength, and Corrosion Resistance of Waterborne Polyurethane Composites
Fangfang Wang, Xiangrong Liu, Bin Cao, Xiaobao Wang, Kangjun Dong
{"title":"Influence of the Dispersion of Carbon Nanotubes on the Electrical Conductivity, Adhesion Strength, and Corrosion Resistance of Waterborne Polyurethane Composites","authors":"Fangfang Wang, Xiangrong Liu, Bin Cao, Xiaobao Wang, Kangjun Dong","doi":"10.3390/coatings14091108","DOIUrl":null,"url":null,"abstract":"Due to the presence of many flammable substances in the working environments of the petrochemical industry, anticorrosive conductive coatings need to be used on metal equipment to avoid safety accidents like fires. However, existing conductive solvent-based coatings are volatile when exposed to flammable and toxic organic solvents. Thus, in this work, a series of eco-friendly anticorrosive waterborne polyurethane (WPU) composites with multi-walled carbon nanotubes (MWCNTs) were prepared via a low-cost and practical process; the dispersion of MWCNTs was revealed when present in different amounts, and the mechanism behind the conduction of WPU composites was determined. We concluded that low amounts of MWCNTs were well dispersed, generating a conductive network, and the WPU composite was not entirely covered by the MWCNT particles, so the electrical conductivity in certain parts of the coating was good. When the content of MWCNTs was excessive, some stretched MWCNTs dispersed to the top of the composite and many MWCNTs agglomerated at the bottom. Additionally, when the content of MWCNTs was increased, the electrical conductivity, corrosion resistance, and adhesion strength of the WPU composite decreased. Our results could provide a theoretical foundation for the preparation of anticorrosive conductive waterborne composites for protecting equipment in the petrochemical industry.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"280 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091108","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the presence of many flammable substances in the working environments of the petrochemical industry, anticorrosive conductive coatings need to be used on metal equipment to avoid safety accidents like fires. However, existing conductive solvent-based coatings are volatile when exposed to flammable and toxic organic solvents. Thus, in this work, a series of eco-friendly anticorrosive waterborne polyurethane (WPU) composites with multi-walled carbon nanotubes (MWCNTs) were prepared via a low-cost and practical process; the dispersion of MWCNTs was revealed when present in different amounts, and the mechanism behind the conduction of WPU composites was determined. We concluded that low amounts of MWCNTs were well dispersed, generating a conductive network, and the WPU composite was not entirely covered by the MWCNT particles, so the electrical conductivity in certain parts of the coating was good. When the content of MWCNTs was excessive, some stretched MWCNTs dispersed to the top of the composite and many MWCNTs agglomerated at the bottom. Additionally, when the content of MWCNTs was increased, the electrical conductivity, corrosion resistance, and adhesion strength of the WPU composite decreased. Our results could provide a theoretical foundation for the preparation of anticorrosive conductive waterborne composites for protecting equipment in the petrochemical industry.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material