Synergistic Effect of Elliptic Textures and H-DLC Coatings for Enhancing the Tribological Performance of CuAl10Fe5Ni5 Valve Plate Surfaces

IF 2.9 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS Coatings Pub Date : 2024-09-09 DOI:10.3390/coatings14091161
Mengjiao Wang, Mingbo Zhu, Xinzheng Hu, Kun Liu, Xuefeng Fan, Xiangkai Meng, Xudong Peng, Jinqing Wang
{"title":"Synergistic Effect of Elliptic Textures and H-DLC Coatings for Enhancing the Tribological Performance of CuAl10Fe5Ni5 Valve Plate Surfaces","authors":"Mengjiao Wang, Mingbo Zhu, Xinzheng Hu, Kun Liu, Xuefeng Fan, Xiangkai Meng, Xudong Peng, Jinqing Wang","doi":"10.3390/coatings14091161","DOIUrl":null,"url":null,"abstract":"Axial piston pumps with compact structures and high efficiency are widely used in construction machinery. The efficiency and lifetime strongly depend on the tribological performance of the pump’s valve plate pair. To enhance the tribological performance of the valve plate pair, surface textures, and H-DLC coatings were fabricated to modify the CuAl10Fe5Ni5 surfaces. The influences of elliptic textures of different sizes and textured H-DLC coatings on the surface friction and wear properties of the valve plate surface under oil lubrication were evaluated using a ring-on-disk tribometer. The results reveal that the friction and wear properties of the CuAl10Fe5Ni5 surfaces are significantly enhanced by elliptic textures, and the friction coefficient and wear rate of textured CuAl10Fe5Ni5 with E90 are maximally decreased by 95% and 87%, respectively. Compared with the surface textures and H-DLC coatings, the textured H-DLC coating has the greatest ability to reduce wear and adhesion. The wear rate of the textured H-DLC coating is further reduced by 98%. This improvement can be explained by the synergistic effect of the elliptic textures and H-DLC coatings, which are attributed to the reduced contact area, debris capture, and secondary lubrication of the elliptic textures, and increased surface hardness.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"103 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091161","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Axial piston pumps with compact structures and high efficiency are widely used in construction machinery. The efficiency and lifetime strongly depend on the tribological performance of the pump’s valve plate pair. To enhance the tribological performance of the valve plate pair, surface textures, and H-DLC coatings were fabricated to modify the CuAl10Fe5Ni5 surfaces. The influences of elliptic textures of different sizes and textured H-DLC coatings on the surface friction and wear properties of the valve plate surface under oil lubrication were evaluated using a ring-on-disk tribometer. The results reveal that the friction and wear properties of the CuAl10Fe5Ni5 surfaces are significantly enhanced by elliptic textures, and the friction coefficient and wear rate of textured CuAl10Fe5Ni5 with E90 are maximally decreased by 95% and 87%, respectively. Compared with the surface textures and H-DLC coatings, the textured H-DLC coating has the greatest ability to reduce wear and adhesion. The wear rate of the textured H-DLC coating is further reduced by 98%. This improvement can be explained by the synergistic effect of the elliptic textures and H-DLC coatings, which are attributed to the reduced contact area, debris capture, and secondary lubrication of the elliptic textures, and increased surface hardness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
椭圆纹理和 H-DLC 涂层对提高 CuAl10Fe5Ni5 阀板表面摩擦学性能的协同效应
轴向柱塞泵结构紧凑、效率高,被广泛应用于工程机械领域。效率和使用寿命在很大程度上取决于泵阀板对的摩擦学性能。为了提高阀板对的摩擦学性能,我们制作了表面纹理和 H-DLC 涂层来修饰 CuAl10Fe5Ni5 表面。使用环盘摩擦磨损仪评估了不同尺寸的椭圆纹理和纹理 H-DLC 涂层对油润滑下阀板表面摩擦和磨损性能的影响。结果表明,椭圆纹理显著提高了 CuAl10Fe5Ni5 表面的摩擦和磨损性能,纹理为 E90 的 CuAl10Fe5Ni5 的摩擦系数和磨损率最大分别降低了 95% 和 87%。与表面纹理和 H-DLC 涂层相比,纹理 H-DLC 涂层的减磨和附着能力最强。纹理 H-DLC 涂层的磨损率进一步降低了 98%。这种改善可以解释为椭圆纹理和 H-DLC 涂层的协同效应,这归因于椭圆纹理减少了接触面积、碎片捕获和二次润滑,并提高了表面硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Coatings
Coatings Materials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍: Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: * manuscripts regarding research proposals and research ideas will be particularly welcomed * electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material
期刊最新文献
The Construction of a Small-Caliber Barrel Wear Model and a Study of the Barrel Wear Rule Influence of Oxygen and Nitrogen Flow Ratios on the Microstructure Evolution in AlCrTaTiZr High-Entropy Oxynitride Films Forming Epoxy Coatings on Laser-Engraved Surface of Aluminum Alloy to Reinforce the Bonding Joint with a Carbon Fiber Composite Shelf-Life Extension and Quality Changes of Fresh-Cut Apple via Sago and Soy-Oil-Based Edible Coatings Corrosion Resistance and In Vitro Biological Properties of TiO2 on MAO-Coated AZ31 Magnesium Alloy via ALD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1