Stretch triggers microtubule stabilization and MARCKS-dependent membrane incorporation in the shaft of embryonic axons

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Biology Pub Date : 2024-09-11 DOI:10.1016/j.cub.2024.08.018
Sara C. Sousa, Miguel Aroso, Rita Bessa, Eduardo Veríssimo, Tiago Ferreira da Silva, Cátia D.F. Lopes, Pedro Brites, Jorge Vieira, Cristina P. Vieira, Paulo C. Aguiar, Monica M. Sousa
{"title":"Stretch triggers microtubule stabilization and MARCKS-dependent membrane incorporation in the shaft of embryonic axons","authors":"Sara C. Sousa, Miguel Aroso, Rita Bessa, Eduardo Veríssimo, Tiago Ferreira da Silva, Cátia D.F. Lopes, Pedro Brites, Jorge Vieira, Cristina P. Vieira, Paulo C. Aguiar, Monica M. Sousa","doi":"10.1016/j.cub.2024.08.018","DOIUrl":null,"url":null,"abstract":"<p>Neurons have a unique polarized nature that must adapt to environmental changes throughout their lifespan. During embryonic development, axon elongation is led by the growth cone,<span><span><sup>1</sup></span></span> culminating in the formation of a presynaptic terminal. After synapses are formed, axons elongate in a growth cone-independent manner to accompany body growth while maintaining their ultrastructure and function.<span><span><sup>2</sup></span></span><sup>,</sup><span><span><sup>3</sup></span></span><sup>,</sup><span><span><sup>4</sup></span></span><sup>,</sup><span><span><sup>5</sup></span></span><sup>,</sup><span><span><sup>6</sup></span></span> To further understand mechanical strains on the axon shaft, we developed a computer-controlled stretchable microfluidic platform compatible with multi-omics and live imaging. Our data show that sensory embryonic dorsal root ganglia (DRGs) neurons have high plasticity, with axon shaft microtubules decreasing polymerization rates, aligning with the direction of tension, and undergoing stabilization. Moreover, in embryonic DRGs, stretch triggers yes-associated protein (YAP) nuclear translocation, supporting its participation in the regulatory network that enables tension-driven axon growth. Other than cytoskeleton remodeling, stretch prompted MARCKS-dependent formation of plasmalemmal precursor vesicles (PPVs), resulting in new membrane incorporation throughout the axon shaft. In contrast, adolescent DRGs showed a less robust adaptation, with axonal microtubules being less responsive to stretch. Also, while adolescent DRGs were still amenable to strain-induced PPV formation at higher stretch rates, new membrane incorporation in the axon shaft failed to occur. In summary, we developed a new resource to study the biology of axon stretch growth. By unraveling cytoskeleton adaptation and membrane remodeling in the axon shaft of stretched neurons, we are moving forward in understanding axon growth.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.08.018","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurons have a unique polarized nature that must adapt to environmental changes throughout their lifespan. During embryonic development, axon elongation is led by the growth cone,1 culminating in the formation of a presynaptic terminal. After synapses are formed, axons elongate in a growth cone-independent manner to accompany body growth while maintaining their ultrastructure and function.2,3,4,5,6 To further understand mechanical strains on the axon shaft, we developed a computer-controlled stretchable microfluidic platform compatible with multi-omics and live imaging. Our data show that sensory embryonic dorsal root ganglia (DRGs) neurons have high plasticity, with axon shaft microtubules decreasing polymerization rates, aligning with the direction of tension, and undergoing stabilization. Moreover, in embryonic DRGs, stretch triggers yes-associated protein (YAP) nuclear translocation, supporting its participation in the regulatory network that enables tension-driven axon growth. Other than cytoskeleton remodeling, stretch prompted MARCKS-dependent formation of plasmalemmal precursor vesicles (PPVs), resulting in new membrane incorporation throughout the axon shaft. In contrast, adolescent DRGs showed a less robust adaptation, with axonal microtubules being less responsive to stretch. Also, while adolescent DRGs were still amenable to strain-induced PPV formation at higher stretch rates, new membrane incorporation in the axon shaft failed to occur. In summary, we developed a new resource to study the biology of axon stretch growth. By unraveling cytoskeleton adaptation and membrane remodeling in the axon shaft of stretched neurons, we are moving forward in understanding axon growth.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拉伸触发胚胎轴突中的微管稳定和依赖 MARCKS 的膜结合
神经元具有独特的极化特性,在其整个生命周期中必须适应环境的变化。在胚胎发育过程中,轴突的伸长由生长锥1 主导,最终形成突触前末端。突触形成后,轴突会以一种与生长锥无关的方式伸长,以伴随身体的生长,同时保持其超微结构和功能。2,3,4,5,6 为了进一步了解轴突轴上的机械应变,我们开发了一种与多组学和实时成像兼容的计算机控制的可拉伸微流体平台。我们的数据显示,感觉胚胎背根神经节(DRGs)神经元具有高度的可塑性,轴突轴微管的聚合率降低,与张力方向一致并趋于稳定。此外,在胚胎DRGs中,拉伸会触发 "是 "相关蛋白(YAP)的核转位,支持其参与调控网络,从而实现张力驱动的轴突生长。除细胞骨架重塑外,拉伸还促使MARCKS依赖性地形成质膜前体小泡(PPV),从而在整个轴突轴上形成新的膜。相比之下,青春期DRG的适应能力较弱,轴突微管对拉伸的反应较小。此外,虽然在更高的拉伸率下,青春期DRGs仍能适应应变诱导的PPV形成,但轴突轴上的新膜结合却未能发生。总之,我们开发了一种研究轴突拉伸生长生物学的新资源。通过揭示拉伸神经元轴突轴中的细胞骨架适应和膜重塑,我们在理解轴突生长方面取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
期刊最新文献
Systems mapping of bidirectional endosomal transport through the crowded cell Protofilament-specific nanopatterns of tubulin post-translational modifications regulate the mechanics of ciliary beating Serotonergic modulation of swallowing in a complete fly vagus nerve connectome Cingulate to septal circuitry facilitates the preference to affiliate with large peer groups Stretch triggers microtubule stabilization and MARCKS-dependent membrane incorporation in the shaft of embryonic axons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1