{"title":"The effect of cold plasma on the treatment of external otitis: an experimental study in rats","authors":"Tayebe Taghizade, Alireza Akbarzadeh-Baghban, Nasrin Navab Safa","doi":"10.1186/s13568-024-01748-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper we investigate the influence of cold plasma as novel method on the external otitis treatment which is a frequent cause of earache. 24 infected external auditory canals in 24 rats were categorized in four experimental groups including control, plasma exposed, ciprofloxacin drug and mixed of plasma-ciprofloxacin groups. In plasma group, dielectric barrier discharge was employed as the source of cold plasma in 5 days. All rats were observed with otoscope daily and a scoring system was used to evaluate swelling and effusion of the ear canal. Number of colonies in microbiological culture were counted in each group during the first 5 days after treatment. For the multiple group comparisons of swelling and effusion measured in the external auditory canal, Kruskal–Wallis analysis was applied and one-way anova and Kruskal–Wallis analysis was used for the statistical analysis of the results of the cultures in different days. Also, Tukey and Mann–Whitney tests was applied for multiple comparisons. Our findings show that swelling and effusion were obviously reduced in plasma group compared to control group (<i>P</i> < 0.01). Number of colonies in control group was statistically different from those in drug, plasma, and mixed group on the second to fifth day (<i>p</i> < 0.001). According to the results cold plasma can be introduced as an impressive method for external otitis treatment. Moreover, when cold plasma joined to antibiotic method, it leads to a superior performance respecting plasma or antibiotic method alone.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01748-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we investigate the influence of cold plasma as novel method on the external otitis treatment which is a frequent cause of earache. 24 infected external auditory canals in 24 rats were categorized in four experimental groups including control, plasma exposed, ciprofloxacin drug and mixed of plasma-ciprofloxacin groups. In plasma group, dielectric barrier discharge was employed as the source of cold plasma in 5 days. All rats were observed with otoscope daily and a scoring system was used to evaluate swelling and effusion of the ear canal. Number of colonies in microbiological culture were counted in each group during the first 5 days after treatment. For the multiple group comparisons of swelling and effusion measured in the external auditory canal, Kruskal–Wallis analysis was applied and one-way anova and Kruskal–Wallis analysis was used for the statistical analysis of the results of the cultures in different days. Also, Tukey and Mann–Whitney tests was applied for multiple comparisons. Our findings show that swelling and effusion were obviously reduced in plasma group compared to control group (P < 0.01). Number of colonies in control group was statistically different from those in drug, plasma, and mixed group on the second to fifth day (p < 0.001). According to the results cold plasma can be introduced as an impressive method for external otitis treatment. Moreover, when cold plasma joined to antibiotic method, it leads to a superior performance respecting plasma or antibiotic method alone.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.