{"title":"Optimization of mitigation deployment using deep reinforcement learning over an enhanced ATT &CK","authors":"Yingze Liu, Yuanbo Guo, Rajiv Ranjan, Dan Chen","doi":"10.1007/s00607-024-01344-4","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a Deep Reinforcement Learning approach (DRL-MD) aimed at optimizing the deployment of mitigations to minimize redundancy while ensuring effective defense against cyberattacks. DRL-MD initially enhances ATT &CK (Adversarial Tactics, Techniques, and Common Knowledge) to underscore the formal relationships between attacks and defenses. Over the enhanced ATT &CK, DRL-MD then operates in two phases: (1) <i>Estimating Node Importance</i>: DRL-MD proposes a model to estimate the importance of deployed nodes in the network, prioritizing mitigation deployment locations for better evaluation of mitigation effectiveness; and (2) <i>Optimizing Mitigation Deployment</i>: A Soft Actor-Critic algorithm finds the optimal mitigation deployment policy through multi-objective optimization of the importance of deployed nodes, the effectiveness of mitigations in preventing cyberattacks, vulnerability repair, and deployment cost. A case study with DRL-MD against the state-of-the-art counterparts has been performed considering the <i>WannaCry</i> threat, and results indicate that: (1) DRL-MD performs the best with 6.4–11% decrease in deployment cost; and (2) DRL-MD can significantly reduce redundancy in mitigation deployments, which partially benefits from the enhanced ATT &CK model. Overall, a comprehensive solution of mitigation deployment has been fostered to significantly lower the redundancy with more effective defenses against cyberattacks sustained.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"437 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01344-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a Deep Reinforcement Learning approach (DRL-MD) aimed at optimizing the deployment of mitigations to minimize redundancy while ensuring effective defense against cyberattacks. DRL-MD initially enhances ATT &CK (Adversarial Tactics, Techniques, and Common Knowledge) to underscore the formal relationships between attacks and defenses. Over the enhanced ATT &CK, DRL-MD then operates in two phases: (1) Estimating Node Importance: DRL-MD proposes a model to estimate the importance of deployed nodes in the network, prioritizing mitigation deployment locations for better evaluation of mitigation effectiveness; and (2) Optimizing Mitigation Deployment: A Soft Actor-Critic algorithm finds the optimal mitigation deployment policy through multi-objective optimization of the importance of deployed nodes, the effectiveness of mitigations in preventing cyberattacks, vulnerability repair, and deployment cost. A case study with DRL-MD against the state-of-the-art counterparts has been performed considering the WannaCry threat, and results indicate that: (1) DRL-MD performs the best with 6.4–11% decrease in deployment cost; and (2) DRL-MD can significantly reduce redundancy in mitigation deployments, which partially benefits from the enhanced ATT &CK model. Overall, a comprehensive solution of mitigation deployment has been fostered to significantly lower the redundancy with more effective defenses against cyberattacks sustained.
期刊介绍:
Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.