A demand forecasting system of product categories defined by their time series using a hybrid approach of ensemble learning with feature engineering

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Computing Pub Date : 2024-09-02 DOI:10.1007/s00607-024-01320-y
Santiago Mejía, Jose Aguilar
{"title":"A demand forecasting system of product categories defined by their time series using a hybrid approach of ensemble learning with feature engineering","authors":"Santiago Mejía, Jose Aguilar","doi":"10.1007/s00607-024-01320-y","DOIUrl":null,"url":null,"abstract":"<p>Retail companies face major problems in the estimation of their product’s future demand due to the high diversity of sales behavior that each good presents. Different forecasting models are implemented to meet the demand requirements for efficient inventory management. However, in most of the proposed works, a single model approach is applied to forecast all products, ignoring that some methods are better adapted for certain features of the demand time series of each product. The proposed forecasting system addresses this problem, by implementing a two-phase methodology that initially clusters the products with the application of an unsupervised learning approach using the extracted demand features of each good, and then, implements a second phase where, after a feature engineering process, a set of different forecasting methods are evaluated to identify those with best performs for each cluster. Finally, ensemble machine learning models are implemented using the top-performing models of each cluster to carry out the demand estimation. The results indicate that the proposed forecasting system improves the demand estimation over the single forecasting approaches when evaluating the R<sup>2</sup>, MSE, and MASE quality measures.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01320-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Retail companies face major problems in the estimation of their product’s future demand due to the high diversity of sales behavior that each good presents. Different forecasting models are implemented to meet the demand requirements for efficient inventory management. However, in most of the proposed works, a single model approach is applied to forecast all products, ignoring that some methods are better adapted for certain features of the demand time series of each product. The proposed forecasting system addresses this problem, by implementing a two-phase methodology that initially clusters the products with the application of an unsupervised learning approach using the extracted demand features of each good, and then, implements a second phase where, after a feature engineering process, a set of different forecasting methods are evaluated to identify those with best performs for each cluster. Finally, ensemble machine learning models are implemented using the top-performing models of each cluster to carry out the demand estimation. The results indicate that the proposed forecasting system improves the demand estimation over the single forecasting approaches when evaluating the R2, MSE, and MASE quality measures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用集合学习与特征工程的混合方法,建立由时间序列定义的产品类别需求预测系统
由于每种商品的销售行为千差万别,零售公司在估计其产品的未来需求时面临着重大问题。为了满足高效库存管理的需求要求,人们采用了不同的预测模型。然而,在大多数提议的工作中,都是采用单一模型方法来预测所有产品,而忽略了有些方法更适合每种产品需求时间序列的某些特征。为解决这一问题,所提出的预测系统分为两个阶段:首先,采用无监督学习方法,利用提取的每种商品的需求特征对产品进行聚类;然后,实施第二阶段,在特征工程流程之后,对一系列不同的预测方法进行评估,以确定哪些方法在每个聚类中表现最佳。最后,使用每个群组中表现最好的模型来实施集合机器学习模型,以进行需求预测。结果表明,在评估 R2、MSE 和 MASE 质量指标时,与单一预测方法相比,建议的预测系统提高了需求预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computing
Computing 工程技术-计算机:理论方法
CiteScore
8.20
自引率
2.70%
发文量
107
审稿时长
3 months
期刊介绍: Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.
期刊最新文献
Mapping and just-in-time traffic congestion mitigation for emergency vehicles in smart cities Fog intelligence for energy efficient management in smart street lamps Contextual authentication of users and devices using machine learning Multi-objective service composition optimization problem in IoT for agriculture 4.0 Robust evaluation of GPU compute instances for HPC and AI in the cloud: a TOPSIS approach with sensitivity, bootstrapping, and non-parametric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1