{"title":"Synthesis and characterization of metronidazole-based ZnMoO₄ nanocomposite: Photocatalysis and antifungal activity","authors":"Bhupendra Kande, Prachi Parmar Nimje, Bhawana Jain, Sanju Singh","doi":"10.1016/j.nanoso.2024.101306","DOIUrl":null,"url":null,"abstract":"This study introduces a novel Metronidazole-Based ZnMoO₄ Nanocomposite (MTZ-ZnMO), a hybrid material combining ZnMoO₄ and metronidazole (MTZ) that exhibits significant potential for photocatalytic and antifungal applications. The nanocomposite was synthesized using a facile hydrothermal method and characterized using various analytical techniques including X-ray diffraction (XRD), Fourier scanning electron microscope (FESEM), Energy dispersive spectroscopy (EDS), Photo-luminance emission spectra (PL) and UV-Visible spectroscopy. The photocatalytic performance of the nanocomposite was evaluated through the degradation of methylene blue (MB) visible light irradiation. Additionally, its antifungal properties were assessed against common fungi . Results demonstrated incorporation of MTZ resulted in enhanced photocatalytic degradation of MB under visible light irradiation and concentration dependent antifungal activity against . These findings highlight the material’s multifunctional potential for use in environmental remediation and catalytic applications, offering a promising approach to integrating photocatalytic and antifungul properties in a single nanocomposite.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.4500,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.nanoso.2024.101306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a novel Metronidazole-Based ZnMoO₄ Nanocomposite (MTZ-ZnMO), a hybrid material combining ZnMoO₄ and metronidazole (MTZ) that exhibits significant potential for photocatalytic and antifungal applications. The nanocomposite was synthesized using a facile hydrothermal method and characterized using various analytical techniques including X-ray diffraction (XRD), Fourier scanning electron microscope (FESEM), Energy dispersive spectroscopy (EDS), Photo-luminance emission spectra (PL) and UV-Visible spectroscopy. The photocatalytic performance of the nanocomposite was evaluated through the degradation of methylene blue (MB) visible light irradiation. Additionally, its antifungal properties were assessed against common fungi . Results demonstrated incorporation of MTZ resulted in enhanced photocatalytic degradation of MB under visible light irradiation and concentration dependent antifungal activity against . These findings highlight the material’s multifunctional potential for use in environmental remediation and catalytic applications, offering a promising approach to integrating photocatalytic and antifungul properties in a single nanocomposite.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .