Temperature Promotes Photoluminescence in Lanthanide‐Doped 3D Ceramic Microarchitectures

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Interfaces Pub Date : 2024-09-12 DOI:10.1002/admi.202400339
Cristian Rosero‐Arias, Geraldo Cristian Vásquez, Noelia Geraldine Davila‐Montero, Jedrzej Winczewski, Bastian Mei, Israel De Leon, David Maestre, Han Gardeniers, Alan Aguirre‐Soto, Arturo Susarrey‐Arce
{"title":"Temperature Promotes Photoluminescence in Lanthanide‐Doped 3D Ceramic Microarchitectures","authors":"Cristian Rosero‐Arias, Geraldo Cristian Vásquez, Noelia Geraldine Davila‐Montero, Jedrzej Winczewski, Bastian Mei, Israel De Leon, David Maestre, Han Gardeniers, Alan Aguirre‐Soto, Arturo Susarrey‐Arce","doi":"10.1002/admi.202400339","DOIUrl":null,"url":null,"abstract":"Two‐photon lithography (TPL) is a powerful technique for creating 3D microarchitectures. Applied to high‐refractive‐index materials like ZrO<jats:sub>2</jats:sub>, it promises advanced optics. This is the case of ZrO<jats:sub>2</jats:sub> host matrixes in combination with luminescent dopants. However, due to the nonideal crystallinity attained to the TPL pre‐ceramic replica from a custom‐made photoresin, the emission of lanthanide (Ln) dopants in ZrO<jats:sub>2</jats:sub> microarchitectures can be suboptimal. However, crystallinity exacerbated by annealing can promote Ln‐emission, thereby enabling the integration of ceramic micro‐optic into a low‐temperature process. This work presents a photoresin containing a metal‐organic monomer tailored for TPL, enabling the fabrication of Ln‐doped tetragonal ZrO<jats:sub>2</jats:sub> (<jats:italic>t</jats:italic>‐ZrO<jats:sub>2</jats:sub>) microarchitectures. The emission properties of Ln‐doped microarchitectures with trivalent Ln ions (Ln<jats:sup>3+</jats:sup>), i.e., Yb<jats:sup>3+</jats:sup> (2.5 mol%), Er<jats:sup>3+</jats:sup> (0.35 mol%), and Tm<jats:sup>3+</jats:sup> (0.35 mol%) are studied. The results demonstrate that Ln emission is absent when annealing the microarchitectures at 600 °C. Annealing at 750 °C activates Ln<jats:sup>3+</jats:sup> emissions, including <jats:sup>2</jats:sup>F<jats:sub>5/2</jats:sub>–<jats:sup>2</jats:sup>F<jats:sub>7/2</jats:sub> (infrared), <jats:sup>4</jats:sup>S<jats:sub>3/2</jats:sub>–<jats:sup>4</jats:sup>I<jats:sub>15/2</jats:sub> (green), and <jats:sup>3</jats:sup>H<jats:sub>4</jats:sub>–<jats:sup>3</jats:sup>F<jats:sub>6</jats:sub> (near‐infrared) transitions corresponding to Yb, Er, and Tm species. Transmission electron microscopy (TEM) confirms that <jats:italic>t</jats:italic>‐ZrO<jats:sub>2</jats:sub> crystallinity becomes more prominent at 750 °C, demonstrating the promotion of Ln emissions upon thermal treatment and underscoring the role of crystalline in TPL micro‐optical ceramics.","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/admi.202400339","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two‐photon lithography (TPL) is a powerful technique for creating 3D microarchitectures. Applied to high‐refractive‐index materials like ZrO2, it promises advanced optics. This is the case of ZrO2 host matrixes in combination with luminescent dopants. However, due to the nonideal crystallinity attained to the TPL pre‐ceramic replica from a custom‐made photoresin, the emission of lanthanide (Ln) dopants in ZrO2 microarchitectures can be suboptimal. However, crystallinity exacerbated by annealing can promote Ln‐emission, thereby enabling the integration of ceramic micro‐optic into a low‐temperature process. This work presents a photoresin containing a metal‐organic monomer tailored for TPL, enabling the fabrication of Ln‐doped tetragonal ZrO2 (t‐ZrO2) microarchitectures. The emission properties of Ln‐doped microarchitectures with trivalent Ln ions (Ln3+), i.e., Yb3+ (2.5 mol%), Er3+ (0.35 mol%), and Tm3+ (0.35 mol%) are studied. The results demonstrate that Ln emission is absent when annealing the microarchitectures at 600 °C. Annealing at 750 °C activates Ln3+ emissions, including 2F5/22F7/2 (infrared), 4S3/24I15/2 (green), and 3H43F6 (near‐infrared) transitions corresponding to Yb, Er, and Tm species. Transmission electron microscopy (TEM) confirms that t‐ZrO2 crystallinity becomes more prominent at 750 °C, demonstrating the promotion of Ln emissions upon thermal treatment and underscoring the role of crystalline in TPL micro‐optical ceramics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度促进掺杂镧系元素的三维陶瓷微体系结构中的光致发光
双光子光刻(TPL)是一种创建三维微架构的强大技术。将其应用于像氧化锆这样的高折射率材料,有望产生先进的光学效果。二氧化锆主基质与发光掺杂剂的结合就是这种情况。然而,由于定制光刻胶的 TPL 预陶瓷复制品的结晶度不理想,ZrO2 微结构中镧系元素(Ln)掺杂剂的发射效果可能不尽如人意。然而,退火会加剧结晶度,促进镧系元素的发射,从而使陶瓷微光学集成到低温工艺中。本研究提出了一种含有为 TPL 量身定制的金属有机单体的光刻胶,从而能够制造出掺 Ln 的四方氧化锆(t-ZrO2)微结构。研究了掺有三价 Ln 离子(Ln3+),即 Yb3+(2.5 摩尔%)、Er3+(0.35 摩尔%)和 Tm3+(0.35 摩尔%)的 Ln 微结构的发射特性。结果表明,在 600 ℃ 下退火时,微体系结构没有 Ln 发射。750 °C 退火激活了 Ln3+ 发射,包括 2F5/2-2F7/2(红外)、4S3/2-4I15/2(绿色)和 3H4-3F6(近红外)跃迁,这些跃迁分别对应于 Yb、Er 和 Tm 物种。透射电子显微镜(TEM)证实,t-ZrO2 的结晶度在 750 ℃ 时变得更加突出,这表明热处理会促进 Ln 发射,并强调了结晶在 TPL 微型光学陶瓷中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
期刊最新文献
Mineral Interface Doping: Hydroxyapatite Deposited on Silicon to Trigger the Electronic Properties Exploring Wettability of Re‐Entrant Microstructures: Effects of Geometry and Material Composition Capping Ligand Engineering of Cadmium‐Free AIZS Quantum Dots Toward Bright Electroluminescent Light‐Emitting Diodes by All‐Solution Process Covalent Grafting of Tanfloc on Titania Nanotube Arrays: An Approach to Mitigate Bacterial Adhesion and Improve the Antibacterial Efficacy of Titanium Implants Temperature Promotes Photoluminescence in Lanthanide‐Doped 3D Ceramic Microarchitectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1