Rational H2O deintercalation effects on cobalt vanadium oxide hydrates for ultrafast energy storage devices

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2024-09-14 DOI:10.1016/j.apsusc.2024.161221
{"title":"Rational H2O deintercalation effects on cobalt vanadium oxide hydrates for ultrafast energy storage devices","authors":"","doi":"10.1016/j.apsusc.2024.161221","DOIUrl":null,"url":null,"abstract":"<div><p>Pseudocapacitive materials have been employed in supercapacitors owing to their high specific capacitance. Nevertheless, high-level ultrafast capabilities are emphasized to overcome their rapid capacitance degradation under ultrafast-rate ion diffusion conditions. We demonstrated rational H<sub>2</sub>O deintercalation effects on cobalt vanadium oxide hydrate (CVOH) with increasing temperature. As the temperature increases to 200 ℃, CVOH undergoes a partial amorphization and exists in a mixed state of hydrated and dehydrated phases. As the temperature increases to 500 ℃, CVOH recrystallizes into the CVO phase through a complete deintercalation of H<sub>2</sub>O molecules. Such acceleration of H<sub>2</sub>O deintercalation leaves functionalized hydroxyl groups at the vertex oxygens, promoting binding affinity with electrolyte ions. Moreover, the crack propagation is accelerated on the CVO surface, resulting in a nano-split morphology from the surface to the interior of CVO particles that enlarges the contact area between the CVO and electrolyte. As the temperature increases to 800 ℃, H<sub>2</sub>O molecules re-intercalate and carbon bridged covalent bonds are formed between the CVO interlayers, resulting in particle coarsening. Owing to the rational H<sub>2</sub>O deintercalation effects on CVOH, CVO subjected to temperature at 500 ℃ maintained notable specific capacitance retention even under the ultrafast ion diffusion conditions (137.9 F/g at 500 mV/s).</p></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433224019354","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pseudocapacitive materials have been employed in supercapacitors owing to their high specific capacitance. Nevertheless, high-level ultrafast capabilities are emphasized to overcome their rapid capacitance degradation under ultrafast-rate ion diffusion conditions. We demonstrated rational H2O deintercalation effects on cobalt vanadium oxide hydrate (CVOH) with increasing temperature. As the temperature increases to 200 ℃, CVOH undergoes a partial amorphization and exists in a mixed state of hydrated and dehydrated phases. As the temperature increases to 500 ℃, CVOH recrystallizes into the CVO phase through a complete deintercalation of H2O molecules. Such acceleration of H2O deintercalation leaves functionalized hydroxyl groups at the vertex oxygens, promoting binding affinity with electrolyte ions. Moreover, the crack propagation is accelerated on the CVO surface, resulting in a nano-split morphology from the surface to the interior of CVO particles that enlarges the contact area between the CVO and electrolyte. As the temperature increases to 800 ℃, H2O molecules re-intercalate and carbon bridged covalent bonds are formed between the CVO interlayers, resulting in particle coarsening. Owing to the rational H2O deintercalation effects on CVOH, CVO subjected to temperature at 500 ℃ maintained notable specific capacitance retention even under the ultrafast ion diffusion conditions (137.9 F/g at 500 mV/s).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于超快储能设备的氧化钴钒水合物的合理 H2O 脱插效应
伪电容材料因其高比电容而被用于超级电容器中。然而,要克服它们在超高速离子扩散条件下的快速电容衰减,就必须具备高水平的超快能力。我们证明了水合氧化钴(CVOH)随着温度升高而产生的合理的 H2O 脱插效应。当温度升高到 200 ℃ 时,CVOH 发生部分非晶化,处于水合相和脱水相的混合状态。当温度升高到 500 ℃ 时,CVOH 通过 H2O 分子的完全脱intercalation 重新结晶为 CVO 相。H2O 的这种加速脱闰会在顶点氧原子上留下官能化的羟基,从而提高与电解质离子的结合亲和力。此外,裂纹在 CVO 表面加速扩展,形成了从 CVO 颗粒表面到内部的纳米分裂形态,从而扩大了 CVO 与电解质之间的接触面积。当温度升高到 800 ℃ 时,H2O 分子重新钙化,在 CVO 夹层之间形成碳桥共价键,导致颗粒变粗。由于 H2O 对 CVOH 的合理脱闰效应,即使在超快离子扩散条件下(500 mV/s 时为 137.9 F/g),温度为 500 ℃ 的 CVO 仍能保持显著的比电容保持率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Interaction mechanism of interfacial nano-micro bubbles with collectors and its effects on the fine apatite flotation Si/AlN p-n heterojunction interfaced with ultrathin SiO2 A molecular insight into asphalt-aggregate interfacial debonding: The role of hydrogen bonds in water molecule migration O2/N2 separation via delocalization of the magnetic moment in the TM-CNT nano-magnets array under external magnetic field gradient: A molecular dynamic simulation study Facile, scalable and Substrate-Independent omniphobic surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1