Designing tortuous gas diffusion path for hydrogen oxidation reaction and stability of solid oxide fuel cell: An engineered microstructural aspect in anode functional layer

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-09-14 DOI:10.1016/j.ijhydene.2024.09.093
{"title":"Designing tortuous gas diffusion path for hydrogen oxidation reaction and stability of solid oxide fuel cell: An engineered microstructural aspect in anode functional layer","authors":"","doi":"10.1016/j.ijhydene.2024.09.093","DOIUrl":null,"url":null,"abstract":"<div><p>Commercialization of solid oxide fuel cell (SOFC) is restricted due to long term performance degradation. SOFC is activated by diffusion of gasses through porous electrodes to the electrochemical active sites termed as triple phase boundary (TPB). Among all other parameters, tortuosity influences the functionality of TPB and is responsible for gas transport which relates its bulk diffusion and its migration through the porous electrode. The novelty of present research lies in designing of optimum tortuous gas diffusion path for effective hydrogen oxidation reaction through engineered morphology of anode functional layer. The study involves the fabrication of anode for planar SOFC using four configurations. Configuration A and B involves anode monolith synthesized through conventional route [(40 vol % Ni in dispersed-8 mol % Yttria stabilized zirconia (SZ)] and functional core-shell Ni@SZ. Configuration C (trilayer anode, TLA) is designed to have graded matrix with conventional Ni-SZ (fuel inlet side), 28 vol% Ni@SZ acting as active layer and 32 vol % Ni@SZ sandwiched in between. Configuration D consists of Ni@SZ as the active layer onto conventional Ni-SZ support. TLA is found to have minimum tortuosity (τ = 2) with maximum cell endurance for 2000 h (2.06–8.2 %/1000 h@800 °C under load). Ni@SZ with unimodal pore distribution is capable of reducing the activation barrier for charge migration (14 kJmol<sup>-1</sup>) compared to Ni-SZ (32 kJmol<sup>-1</sup>) with multimodal pores. This results in higher redox tolerance for Configuration B-D (4–7 % conductivity degradation/20 cycles) compared to Configuration A (27% conductivity degradation/20 cycles). Post mortem analyses of microstructure support the retention of core-shell morphology of Ni@SZ with lower deterioration.</p></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924038023","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Commercialization of solid oxide fuel cell (SOFC) is restricted due to long term performance degradation. SOFC is activated by diffusion of gasses through porous electrodes to the electrochemical active sites termed as triple phase boundary (TPB). Among all other parameters, tortuosity influences the functionality of TPB and is responsible for gas transport which relates its bulk diffusion and its migration through the porous electrode. The novelty of present research lies in designing of optimum tortuous gas diffusion path for effective hydrogen oxidation reaction through engineered morphology of anode functional layer. The study involves the fabrication of anode for planar SOFC using four configurations. Configuration A and B involves anode monolith synthesized through conventional route [(40 vol % Ni in dispersed-8 mol % Yttria stabilized zirconia (SZ)] and functional core-shell Ni@SZ. Configuration C (trilayer anode, TLA) is designed to have graded matrix with conventional Ni-SZ (fuel inlet side), 28 vol% Ni@SZ acting as active layer and 32 vol % Ni@SZ sandwiched in between. Configuration D consists of Ni@SZ as the active layer onto conventional Ni-SZ support. TLA is found to have minimum tortuosity (τ = 2) with maximum cell endurance for 2000 h (2.06–8.2 %/1000 h@800 °C under load). Ni@SZ with unimodal pore distribution is capable of reducing the activation barrier for charge migration (14 kJmol-1) compared to Ni-SZ (32 kJmol-1) with multimodal pores. This results in higher redox tolerance for Configuration B-D (4–7 % conductivity degradation/20 cycles) compared to Configuration A (27% conductivity degradation/20 cycles). Post mortem analyses of microstructure support the retention of core-shell morphology of Ni@SZ with lower deterioration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为氢氧化反应和固体氧化物燃料电池的稳定性设计曲折的气体扩散路径:阳极功能层的微结构设计
由于长期性能下降,固体氧化物燃料电池(SOFC)的商业化受到限制。SOFC 的激活方式是气体通过多孔电极扩散到被称为三相边界(TPB)的电化学活性位点。在所有其他参数中,曲折度会影响 TPB 的功能,并负责气体传输,这关系到气体在多孔电极中的扩散和迁移。本研究的新颖之处在于通过阳极功能层的工程形态设计出最佳的迂回气体扩散路径,从而实现有效的氢氧化反应。研究涉及使用四种配置制造平面 SOFC 的阳极。配置 A 和 B 包括通过传统路线合成的阳极单片[(40 vol % Ni 在分散的 8 mol % 钇稳定氧化锆(SZ)中)]和功能核壳 Ni@SZ。配置 C(三层阳极,TLA)采用分级基体设计,其中包括传统的 Ni-SZ(燃料入口侧)、作为活性层的 28 Vol % Ni@SZ,以及夹在中间的 32 Vol % Ni@SZ。配置 D 由 Ni@SZ 作为活性层和传统的 Ni-SZ 支架组成。研究发现,TLA 具有最小的曲折度(τ = 2),在 2000 小时内具有最大的电池耐久性(2.06-8.2%/1000 小时@800 °C负载)。与具有多模态孔隙的 Ni-SZ(32 kJmol-1)相比,具有单模态孔隙分布的 Ni@SZ 能够降低电荷迁移的活化势垒(14 kJmol-1)。因此,与配置 A(电导率下降 27%/20 次)相比,配置 B-D 的氧化还原耐受性更高(4-7% 的电导率下降/20 次)。对微观结构的尸检分析表明,Ni@SZ 的核壳形态得以保留,且劣化程度较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Catalytic hydrothermal conversion of end-of-life plastic waste in near supercritical water Temperature-controlled shape transformation of PtCo alloy catalysts for enhanced ammonia oxidation in anion-exchange membrane direct ammonia fuel cells WO2–N co-doped 2D Carbon nanosheets as multifunctional additives for enhancing the electrochemical hydrogen storage performance of Co2B Designing tortuous gas diffusion path for hydrogen oxidation reaction and stability of solid oxide fuel cell: An engineered microstructural aspect in anode functional layer Numerical study of a bamboo-like micro-tubular solid oxide fuel cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1