{"title":"Realization of narrow-band blue emission based on structurally engineering-designed Bi3+-doped phosphors","authors":"","doi":"10.1016/j.jlumin.2024.120896","DOIUrl":null,"url":null,"abstract":"<div><p>The exploration of efficient narrowband emission phosphors is crucial for white light-emitting diodes (WLEDs) in high-performance backlighting applications. Up to now, the discovery of narrow-band Bi<sup>3+</sup>-doped phosphors for emerging applications remains challenging because Bi<sup>3+</sup> typically exhibits broadband emission properties. A novel narrow-band blue phosphor (Ca<sub>4</sub>SnGe<sub>3</sub>O<sub>12</sub>:Bi<sup>3+</sup>) was successfully synthesized, benefiting from the highly symmetric crystal environment and tightly connected rigid structure of the garnet structure. The phosphor demonstrates broad excitation in the near-ultraviolet (n-UV) region and emits narrowband blue light at 442 nm (FWHM = 36 nm) with a color purity of 94.7 %. In this paper, the assignment of different luminescence centers and the use of Zr/Hf to partially replace Sn to enhance luminescence performance are studied. The reasons for the consequent changes in luminescence behavior are explained in detail. The use of narrowband commercial red K<sub>2</sub>SiF<sub>6</sub>:Mn<sup>4+</sup>, green β-Sialon:Eu<sup>2+</sup>, and synthetic blue luminescent materials as RGB emitters covered 81 % of the National Television System Committee (NTSC) color space, demonstrating great potential for liquid-crystal-display (LCD) backlight use.</p></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324004605","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The exploration of efficient narrowband emission phosphors is crucial for white light-emitting diodes (WLEDs) in high-performance backlighting applications. Up to now, the discovery of narrow-band Bi3+-doped phosphors for emerging applications remains challenging because Bi3+ typically exhibits broadband emission properties. A novel narrow-band blue phosphor (Ca4SnGe3O12:Bi3+) was successfully synthesized, benefiting from the highly symmetric crystal environment and tightly connected rigid structure of the garnet structure. The phosphor demonstrates broad excitation in the near-ultraviolet (n-UV) region and emits narrowband blue light at 442 nm (FWHM = 36 nm) with a color purity of 94.7 %. In this paper, the assignment of different luminescence centers and the use of Zr/Hf to partially replace Sn to enhance luminescence performance are studied. The reasons for the consequent changes in luminescence behavior are explained in detail. The use of narrowband commercial red K2SiF6:Mn4+, green β-Sialon:Eu2+, and synthetic blue luminescent materials as RGB emitters covered 81 % of the National Television System Committee (NTSC) color space, demonstrating great potential for liquid-crystal-display (LCD) backlight use.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.