Monomer Composition as a Mechanism to Control the Self-Assembly of Diblock Oligomeric Peptide–Polymer Amphiphiles

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-09-17 DOI:10.1021/acsnano.4c08028
Benjamin P. Allen, Sabila K. Pinky, Emily E. Beard, Abigail A. Gringeri, Nicholas Calzadilla, Matthew A. Sanders, Yaroslava G. Yingling, Abigail S. Knight
{"title":"Monomer Composition as a Mechanism to Control the Self-Assembly of Diblock Oligomeric Peptide–Polymer Amphiphiles","authors":"Benjamin P. Allen, Sabila K. Pinky, Emily E. Beard, Abigail A. Gringeri, Nicholas Calzadilla, Matthew A. Sanders, Yaroslava G. Yingling, Abigail S. Knight","doi":"10.1021/acsnano.4c08028","DOIUrl":null,"url":null,"abstract":"Diblock oligomeric peptide–polymer amphiphiles (PPAs) are biohybrid materials that offer versatile functionality by integrating the sequence-dependent properties of peptides with the synthetic versatility of polymers. Despite their potential as biocompatible materials, the rational design of PPAs for assembly into multichain nanoparticles remains challenging due to the complex intra- and intermolecular interactions emanating from the polymer and peptide segments. To systematically explore the impact of monomer composition on nanoparticle assembly, PPAs were synthesized with a random coil peptide (XTEN2) and oligomeric alkyl acrylates with different side chains: ethyl, <i>tert</i>-butyl, <i>n</i>-butyl, and cyclohexyl. Experimental characterization using electron and atomic force microscopies demonstrated that the tail hydrophobicity impacted accessible morphologies. Moreover, the characterization of different assembly protocols (i.e., bath sonication and thermal annealing) revealed that certain tail compositions provide access to kinetically trapped assemblies. All-atom molecular dynamics simulations of micelle formation unveiled key interactions and differences in core hydration, dictating the PPA assembly behavior. These findings highlight the complexity of PPA assembly dynamics and serve as valuable benchmarks to guide the design of PPAs for a variety of applications, including catalysis, mineralization, targeted sequestration, antimicrobial activity, and cargo transportation.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c08028","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diblock oligomeric peptide–polymer amphiphiles (PPAs) are biohybrid materials that offer versatile functionality by integrating the sequence-dependent properties of peptides with the synthetic versatility of polymers. Despite their potential as biocompatible materials, the rational design of PPAs for assembly into multichain nanoparticles remains challenging due to the complex intra- and intermolecular interactions emanating from the polymer and peptide segments. To systematically explore the impact of monomer composition on nanoparticle assembly, PPAs were synthesized with a random coil peptide (XTEN2) and oligomeric alkyl acrylates with different side chains: ethyl, tert-butyl, n-butyl, and cyclohexyl. Experimental characterization using electron and atomic force microscopies demonstrated that the tail hydrophobicity impacted accessible morphologies. Moreover, the characterization of different assembly protocols (i.e., bath sonication and thermal annealing) revealed that certain tail compositions provide access to kinetically trapped assemblies. All-atom molecular dynamics simulations of micelle formation unveiled key interactions and differences in core hydration, dictating the PPA assembly behavior. These findings highlight the complexity of PPA assembly dynamics and serve as valuable benchmarks to guide the design of PPAs for a variety of applications, including catalysis, mineralization, targeted sequestration, antimicrobial activity, and cargo transportation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单体组成是控制二嵌段低聚物肽-聚合物两亲化合物自组装的一种机制
二嵌段寡聚肽-聚合物双亲化合物(PPAs)是一种生物杂化材料,它将肽的序列依赖特性与聚合物的合成多功能性融为一体,具有多种功能。尽管 PPA 具有作为生物相容性材料的潜力,但由于聚合物和肽段之间复杂的分子内和分子间相互作用,合理设计 PPA 以将其组装成多链纳米颗粒仍具有挑战性。为了系统地探索单体组成对纳米颗粒组装的影响,我们用随机线圈肽(XTEN2)和具有不同侧链(乙基、叔丁基、正丁基和环己基)的低聚烷基丙烯酸酯合成了 PPA。使用电子显微镜和原子力显微镜进行的实验表征表明,尾部疏水性会影响可获得的形态。此外,对不同组装方案(即水浴超声和热退火)进行的表征显示,某些尾部成分可进入动力学捕获组装。胶束形成的全原子分子动力学模拟揭示了核心水合作用的关键相互作用和差异,这些相互作用和差异决定了 PPA 的组装行为。这些发现凸显了 PPA 组装动力学的复杂性,并可作为宝贵的基准,指导设计用于催化、矿化、定向封存、抗菌活性和货物运输等多种应用的 PPA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Liquid Metal Oxide-Assisted Integration of High-k Dielectrics and Metal Contacts for Two-Dimensional Electronics High-Density Atomically Dispersed Metals Activate Adjacent Nitrogen/Carbon Sites for Efficient Ammonia Electrosynthesis from Nitrate Molten Salt Modulation of Potassium–Nitrogen–Carbon for the Breaking Kinetics Bottleneck of Photocatalytic Overall Water Splitting and Environmental Impact Reduction Structure and Defect Identification at Self-Assembled Islands of CO2 Using Scanning Probe Microscopy Monomer Composition as a Mechanism to Control the Self-Assembly of Diblock Oligomeric Peptide–Polymer Amphiphiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1