Microenvironment engineering of non-noble metal alloy for selective propane dehydrogenation

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2024-09-17 DOI:10.1016/j.chempr.2024.08.017
Xin Chang, Zhenpu Lu, Ran Luo, Xianhui Wang, Guodong Sun, Donglong Fu, Zhi-Jian Zhao, Jinlong Gong
{"title":"Microenvironment engineering of non-noble metal alloy for selective propane dehydrogenation","authors":"Xin Chang, Zhenpu Lu, Ran Luo, Xianhui Wang, Guodong Sun, Donglong Fu, Zhi-Jian Zhao, Jinlong Gong","doi":"10.1016/j.chempr.2024.08.017","DOIUrl":null,"url":null,"abstract":"<p>Although non-noble metal catalysts are appealing for propane dehydrogenation, achieving high propylene selectivity remains a persistent challenge, which necessitates the regulation of catalytic microenvironment. In this study, we comparatively investigate three commonly used active metals (Pt, Pd, and non-noble metal Ni) using both theoretical and experimental approaches. We find that the low selectivity of Ni-based catalysts is intrinsically attributed to a narrow interatomic distance (Δ<em>d</em>) between Ni atoms, which promotes side reactions. Thus, Ni-based intermetallic alloys are employed to modulate Δ<em>d</em>, whose surface microenvironment is quantified with a descriptor called degree-of-isolation. The established volcano-shaped isolation-selectivity plot provides a direct avenue for predicting propylene selectivity, which is determined by two competing variables: desorption and further dehydrogenation of propylene. The optimal catalyst, NiIn, manifests moderate Ni–C repulsion, obtaining &gt;91% experimental propylene selectivity. This reveals the Sabatier principle over Ni-based catalysts for selective propane dehydrogenation and underscores the significance of microenvironment engineering.</p>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.08.017","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although non-noble metal catalysts are appealing for propane dehydrogenation, achieving high propylene selectivity remains a persistent challenge, which necessitates the regulation of catalytic microenvironment. In this study, we comparatively investigate three commonly used active metals (Pt, Pd, and non-noble metal Ni) using both theoretical and experimental approaches. We find that the low selectivity of Ni-based catalysts is intrinsically attributed to a narrow interatomic distance (Δd) between Ni atoms, which promotes side reactions. Thus, Ni-based intermetallic alloys are employed to modulate Δd, whose surface microenvironment is quantified with a descriptor called degree-of-isolation. The established volcano-shaped isolation-selectivity plot provides a direct avenue for predicting propylene selectivity, which is determined by two competing variables: desorption and further dehydrogenation of propylene. The optimal catalyst, NiIn, manifests moderate Ni–C repulsion, obtaining >91% experimental propylene selectivity. This reveals the Sabatier principle over Ni-based catalysts for selective propane dehydrogenation and underscores the significance of microenvironment engineering.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于选择性丙烷脱氢的非贵金属合金微环境工程
尽管非贵金属催化剂在丙烷脱氢中很有吸引力,但实现高丙烯选择性仍是一个长期挑战,这就需要对催化微环境进行调节。在本研究中,我们采用理论和实验方法对三种常用活性金属(铂、钯和非贵金属镍)进行了比较研究。我们发现,镍基催化剂选择性低的内在原因是镍原子间的原子间距(Δd)较窄,这会促进副反应。因此,我们采用镍基金属间合金来调节 Δd,其表面微环境可通过一种称为隔离度的描述符来量化。已建立的火山状分离选择性曲线图为预测丙烯选择性提供了直接途径,丙烯选择性由两个竞争变量决定:丙烯的解吸和进一步脱氢。最佳催化剂 NiIn 表现出适度的 Ni-C 排斥,获得了 91% 的实验丙烯选择性。这揭示了用于选择性丙烷脱氢的镍基催化剂的萨巴蒂尔原理,并强调了微环境工程的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
Microenvironment engineering of non-noble metal alloy for selective propane dehydrogenation Recent progress in energy-saving hydrogen production by coupling with value-added anodic reactions Single-molecule spectroscopic probing of N-heterocyclic carbenes on a two-dimensional metal Synthetic flagella spin and contract at the expense of chemical fuel Chemical gardens as analogs for prebiotic chemistry on ocean worlds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1