Enhancing environmental sustainability with federated LSTM models for AI-driven optimization

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY alexandria engineering journal Pub Date : 2024-09-19 DOI:10.1016/j.aej.2024.09.058
{"title":"Enhancing environmental sustainability with federated LSTM models for AI-driven optimization","authors":"","doi":"10.1016/j.aej.2024.09.058","DOIUrl":null,"url":null,"abstract":"<div><p>Combining artificial intelligence (AI) and optimization techniques in the quest for environmental sustainability has emerged as a promising strategy. This paper explores the potential of a Federated Long Short-Term Memory (Fed LSTM) model in addressing environmental challenges through decentralized learning and efficient intelligence. Fed LSTM, a model tailored for government curricula, offers a novel method for analyzing and optimizing disaggregated environmental data across multiple sites while preserving data privacy. Its applications in environmental sustainability span various domains. Firstly, energy policy enables the creation of accurate local energy consumption forecasting models by integrating data from diverse sources such as buildings, infrastructure, and renewable energy installations. Secondly, in environmental monitoring, Fed LSTM facilitates the quantification of key parameters like biodiversity levels. Thirdly, resource efficiency optimizes the use of resources in agriculture, water management, and waste management, leading to more efficient resource management and reduced environmental impact. The benefits of Fed LSTM have the potential to significantly enhance environmental sustainability by providing adaptive solutions and new options for managing complex environmental challenges through decentralized and privacy-protected approaches. This paper advocates for further research and effective implementation of Fed LSTM in environmental sustainability initiatives to realize its full potential in promoting positive environmental development. With an accuracy of 99.2 %, surpassing existing methods, this approach is implemented using Python.</p></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110016824010822/pdfft?md5=5b72cb9f614714004049de7356fc4b1a&pid=1-s2.0-S1110016824010822-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824010822","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Combining artificial intelligence (AI) and optimization techniques in the quest for environmental sustainability has emerged as a promising strategy. This paper explores the potential of a Federated Long Short-Term Memory (Fed LSTM) model in addressing environmental challenges through decentralized learning and efficient intelligence. Fed LSTM, a model tailored for government curricula, offers a novel method for analyzing and optimizing disaggregated environmental data across multiple sites while preserving data privacy. Its applications in environmental sustainability span various domains. Firstly, energy policy enables the creation of accurate local energy consumption forecasting models by integrating data from diverse sources such as buildings, infrastructure, and renewable energy installations. Secondly, in environmental monitoring, Fed LSTM facilitates the quantification of key parameters like biodiversity levels. Thirdly, resource efficiency optimizes the use of resources in agriculture, water management, and waste management, leading to more efficient resource management and reduced environmental impact. The benefits of Fed LSTM have the potential to significantly enhance environmental sustainability by providing adaptive solutions and new options for managing complex environmental challenges through decentralized and privacy-protected approaches. This paper advocates for further research and effective implementation of Fed LSTM in environmental sustainability initiatives to realize its full potential in promoting positive environmental development. With an accuracy of 99.2 %, surpassing existing methods, this approach is implemented using Python.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
期刊最新文献
Mechanism and reaction kinetics analysis of small-molecule gas formation during thermal decomposition of hydroxylamine nitrate Polymeric membrane electrode-based biosensor for detection of methadone: Enhancing doping control in athletes Enhancing environmental sustainability with federated LSTM models for AI-driven optimization Digital twins enable shipbuilding Optimization of multidimensional feature engineering and data partitioning strategies in heart disease prediction models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1