Design of flexible polyethylene glycol-based phase change materials by crystal structure regulation

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-09-16 DOI:10.1016/j.polymer.2024.127632
{"title":"Design of flexible polyethylene glycol-based phase change materials by crystal structure regulation","authors":"","doi":"10.1016/j.polymer.2024.127632","DOIUrl":null,"url":null,"abstract":"<div><p>The design of flexible phase change materials (FPCMs) with polyethylene glycol (PEG) as phase change components remains a great challenge due to high crystalline structure makes for high thermal energy storage ability yet deteriorates mechanical toughness. Herein, the preparation strategy of FPCMs was developed by introducing crystal structure regulators (CSRs) in PEG-based FPCM networks in a form of covalent linkages. The hydroquinone CSR had the strongest ability of crystal structure regulation over FPCMs compared to the three other used CSRs. The FPCMs had tuneable phase change temperatures (−2.0 °C–49.7 °C) and enthalpies (40.7 J g<sup>−1</sup> to 109.3 J g<sup>−1</sup>) depending on the number-average molecular weight (<em>M</em><sub>n</sub> = 4000 Da, 6000 Da) of PEGs used as well as the content and type of CSRs, further enabling tuneable mechanical stress (0.59–15.61 MPa) and strain (5.74%–505.86 %). Compared with the pristine PEGs, the FPCMs yielded excellent shape stability, thermal stability and thermal reliability. The flexibility and phase change properties endowed the FPCMs with excellent self-adaptability and shape memory function. The innovative strategy towards FPCMs highlights the application potential on individual wearable temperature-controlled devices.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124009686","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The design of flexible phase change materials (FPCMs) with polyethylene glycol (PEG) as phase change components remains a great challenge due to high crystalline structure makes for high thermal energy storage ability yet deteriorates mechanical toughness. Herein, the preparation strategy of FPCMs was developed by introducing crystal structure regulators (CSRs) in PEG-based FPCM networks in a form of covalent linkages. The hydroquinone CSR had the strongest ability of crystal structure regulation over FPCMs compared to the three other used CSRs. The FPCMs had tuneable phase change temperatures (−2.0 °C–49.7 °C) and enthalpies (40.7 J g−1 to 109.3 J g−1) depending on the number-average molecular weight (Mn = 4000 Da, 6000 Da) of PEGs used as well as the content and type of CSRs, further enabling tuneable mechanical stress (0.59–15.61 MPa) and strain (5.74%–505.86 %). Compared with the pristine PEGs, the FPCMs yielded excellent shape stability, thermal stability and thermal reliability. The flexibility and phase change properties endowed the FPCMs with excellent self-adaptability and shape memory function. The innovative strategy towards FPCMs highlights the application potential on individual wearable temperature-controlled devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Direct ink writing of customized polymeric structures embedded in a nano-silicate based supporting matrix Polymer coating by oxidative polymerization of a new dopamine analogue with two amino groups High ferroelectric performance of poly (vinylidene difluoride-co-hexafluoropropylene) - based membranes enabled by electrospinning and multilayer lamination Design of flexible polyethylene glycol-based phase change materials by crystal structure regulation Adsorption behavior and mechanism of NH2-MIL-101(Cr)@COFs@SA composite adsorbent for tetracycline removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1