Direct ink writing of customized polymeric structures embedded in a nano-silicate based supporting matrix

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-09-17 DOI:10.1016/j.polymer.2024.127635
{"title":"Direct ink writing of customized polymeric structures embedded in a nano-silicate based supporting matrix","authors":"","doi":"10.1016/j.polymer.2024.127635","DOIUrl":null,"url":null,"abstract":"<div><p>The increase in use of intricate structures for engineering applications has encouraged researchers to find new fabrication techniques. This work presents an innovative approach of embedded 3D printing, which allows fabrication of freeform structures by directly 3D printing inside a supporting matrix. The polymer ink solution was prepared by blending polylactic acid (PLA) and polypropylene carbonate (PPC) in 1,4-dioxane. Laponite RD was used to prepare the aqueous nano-silicate suspension, which exhibited yield stress and thixotropic properties due to its house-of-cards arrangement. Solidification of the 3D printed polymer ink occurred due to the hydrogen bonding between the oxygen atoms of dioxane molecules and the protons of water molecules. Particle image velocimetry study showed that the increasing nano-silicate concentration caused a reduction in yield region as a result of increasing yield stress. Dimensionless parameters (Oldroyd number and ratio of yield stress to hydrostatic pressure) for nano-silicate concentrations with values less than 1 were found to facilitate the nozzle movement without crevice formation, while the values greater than 1 were found to be unsuitable for printing. Different intricate structures such as tubular structures with varying geometry that mimic the native trachea, and a bifurcated tube were 3D printed as a proof-of-concept study. The proposed method introduced a novel approach by utilizing the solvent-water interaction capability to fabricate objects with overhanging geometry. This approach allows 3D printing of a wide variety of polymers by leveraging the miscibility between its corresponding solvent and supporting matrix.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124009716","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in use of intricate structures for engineering applications has encouraged researchers to find new fabrication techniques. This work presents an innovative approach of embedded 3D printing, which allows fabrication of freeform structures by directly 3D printing inside a supporting matrix. The polymer ink solution was prepared by blending polylactic acid (PLA) and polypropylene carbonate (PPC) in 1,4-dioxane. Laponite RD was used to prepare the aqueous nano-silicate suspension, which exhibited yield stress and thixotropic properties due to its house-of-cards arrangement. Solidification of the 3D printed polymer ink occurred due to the hydrogen bonding between the oxygen atoms of dioxane molecules and the protons of water molecules. Particle image velocimetry study showed that the increasing nano-silicate concentration caused a reduction in yield region as a result of increasing yield stress. Dimensionless parameters (Oldroyd number and ratio of yield stress to hydrostatic pressure) for nano-silicate concentrations with values less than 1 were found to facilitate the nozzle movement without crevice formation, while the values greater than 1 were found to be unsuitable for printing. Different intricate structures such as tubular structures with varying geometry that mimic the native trachea, and a bifurcated tube were 3D printed as a proof-of-concept study. The proposed method introduced a novel approach by utilizing the solvent-water interaction capability to fabricate objects with overhanging geometry. This approach allows 3D printing of a wide variety of polymers by leveraging the miscibility between its corresponding solvent and supporting matrix.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Direct ink writing of customized polymeric structures embedded in a nano-silicate based supporting matrix Polymer coating by oxidative polymerization of a new dopamine analogue with two amino groups High ferroelectric performance of poly (vinylidene difluoride-co-hexafluoropropylene) - based membranes enabled by electrospinning and multilayer lamination Design of flexible polyethylene glycol-based phase change materials by crystal structure regulation Adsorption behavior and mechanism of NH2-MIL-101(Cr)@COFs@SA composite adsorbent for tetracycline removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1