{"title":"Molecular serotyping of diarrheagenic Escherichia coli with a MeltArray assay reveals distinct correlation between serotype and pathotype.","authors":"Chen Du,Yiqun Liao,Congcong Ding,Jiayu Huang,Shujuan Zhou,Yiyan Xu,Zhaohui Yang,Xiaolu Shi,Yinghui Li,Min Jiang,Le Zuo,Minxu Li,Shengzhe Bian,Na Xiao,Liqiang Li,Ye Xu,Qinghua Hu,Qingge Li","doi":"10.1080/19490976.2024.2401944","DOIUrl":null,"url":null,"abstract":"Diarrheagenic Escherichia coli serotypes are associated with various clinical syndromes, yet the precise correlation between serotype and pathotype remains unclear. A major barrier to such studies is the reliance on antisera-based serotyping, which is culture-dependent, low-throughput, and cost-ineffective. We have established a highly multiplex PCR-based serotyping assay, termed the MeltArray E. coli serotyping (EST) assay, capable of identifying 163 O-antigen-encoding genes and 53 H-antigen-encoding genes of E. coli. The assay successfully identified serotypes directly from both simulated and real fecal samples, as demonstrated through spike-in validation experiments and a retrospective study. In a multi-province study involving 637 E. coli strains, it revealed that the five major diarrheagenic pathotypes have distinct serotype compositions. Notably, it differentiated 257 Shigella isolates into four major Shigella species, distinguishing them from enteroinvasive E. coli based on their distinct serotype profiles. The assay's universality was further corroborated by in silico analysis of whole-genome sequences from the EnteroBase. We conclude that the MeltArray EST assay represents a paradigm-shifting tool for molecular serotyping of E. coli, with potential routine applications for comprehensive serotype analysis, disease diagnosis, and outbreak detection.","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"5 1","pages":"2401944"},"PeriodicalIF":12.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2024.2401944","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diarrheagenic Escherichia coli serotypes are associated with various clinical syndromes, yet the precise correlation between serotype and pathotype remains unclear. A major barrier to such studies is the reliance on antisera-based serotyping, which is culture-dependent, low-throughput, and cost-ineffective. We have established a highly multiplex PCR-based serotyping assay, termed the MeltArray E. coli serotyping (EST) assay, capable of identifying 163 O-antigen-encoding genes and 53 H-antigen-encoding genes of E. coli. The assay successfully identified serotypes directly from both simulated and real fecal samples, as demonstrated through spike-in validation experiments and a retrospective study. In a multi-province study involving 637 E. coli strains, it revealed that the five major diarrheagenic pathotypes have distinct serotype compositions. Notably, it differentiated 257 Shigella isolates into four major Shigella species, distinguishing them from enteroinvasive E. coli based on their distinct serotype profiles. The assay's universality was further corroborated by in silico analysis of whole-genome sequences from the EnteroBase. We conclude that the MeltArray EST assay represents a paradigm-shifting tool for molecular serotyping of E. coli, with potential routine applications for comprehensive serotype analysis, disease diagnosis, and outbreak detection.
期刊介绍:
The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more.
Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.