Up-Conversion Luminescence and Optical Temperature-Sensing Properties of Yb3+ and Er3+ Co-doped Yttrium Aluminum Garnet Phosphor

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-09-16 DOI:10.1007/s11664-024-11428-8
Jiahao Zha, Chongjun He, Fangzhou Chen, Hongwei Wang, Biao Dong, Lijuan Liu, Mingjun Xia, Chenguang Deng, Qian Li, Yuangang Lu, Huiting Chen, Siguo Liu
{"title":"Up-Conversion Luminescence and Optical Temperature-Sensing Properties of Yb3+ and Er3+ Co-doped Yttrium Aluminum Garnet Phosphor","authors":"Jiahao Zha, Chongjun He, Fangzhou Chen, Hongwei Wang, Biao Dong, Lijuan Liu, Mingjun Xia, Chenguang Deng, Qian Li, Yuangang Lu, Huiting Chen, Siguo Liu","doi":"10.1007/s11664-024-11428-8","DOIUrl":null,"url":null,"abstract":"<p>Fluorescence intensity ratio (FIR) technology is compulsorily needed in non-contact rare-earth luminescent temperature sensors. Here, we present Er/Yb:Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> phosphors synthesized via a high-temperature solid-state reaction method. The crystal structure, microstructure, up-conversion luminescence, and energy transfer between the two ions have been comprehensively analyzed. Under 980-nm excitation, the samples exhibited four distinct transition bands at 475 nm, 525 nm, 546 nm, and 664 nm. The quantum efficiency reached 12.14%. Utilizing the thermally coupled level of I<sub>525</sub>/I<sub>546</sub> as a basis for analysis yields a maximum relative sensitivity of 1.05% K<sup>−1</sup>. We observed that the spectral color coordinates varied linearly with temperature within a specific range, suggesting its potential application as a means of temperature measurement. Furthermore, employing the non-thermally coupled levels of I<sub>546</sub>/I<sub>475</sub> for temperature measurement results in an impressive maximum absolute sensitivity of 8.05% K<sup>−1</sup>, nearly 24 times higher than that achieved through thermally coupled levels alone. The temperature resolution of the synthetic material is basically less than 0.3 K with high thermal stability. Therefore, Er/Yb:Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> phosphors hold promise as viable candidates for components in temperature-sensor applications.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11428-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescence intensity ratio (FIR) technology is compulsorily needed in non-contact rare-earth luminescent temperature sensors. Here, we present Er/Yb:Y3Al5O12 phosphors synthesized via a high-temperature solid-state reaction method. The crystal structure, microstructure, up-conversion luminescence, and energy transfer between the two ions have been comprehensively analyzed. Under 980-nm excitation, the samples exhibited four distinct transition bands at 475 nm, 525 nm, 546 nm, and 664 nm. The quantum efficiency reached 12.14%. Utilizing the thermally coupled level of I525/I546 as a basis for analysis yields a maximum relative sensitivity of 1.05% K−1. We observed that the spectral color coordinates varied linearly with temperature within a specific range, suggesting its potential application as a means of temperature measurement. Furthermore, employing the non-thermally coupled levels of I546/I475 for temperature measurement results in an impressive maximum absolute sensitivity of 8.05% K−1, nearly 24 times higher than that achieved through thermally coupled levels alone. The temperature resolution of the synthetic material is basically less than 0.3 K with high thermal stability. Therefore, Er/Yb:Y3Al5O12 phosphors hold promise as viable candidates for components in temperature-sensor applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂 Yb3+ 和 Er3+ 的钇铝石榴石荧光粉的上转换发光和光学温度传感特性
非接触式稀土发光温度传感器迫切需要荧光强度比(FIR)技术。在此,我们介绍了通过高温固态反应方法合成的 Er/Yb:Y3Al5O12 荧光粉。我们对其晶体结构、微观结构、上转换发光以及两种离子间的能量传递进行了全面分析。在 980 纳米波长的激发下,样品在 475 纳米、525 纳米、546 纳米和 664 纳米波长处呈现出四个不同的过渡带。量子效率达到 12.14%。利用 I525/I546 的热耦合水平作为分析基础,可获得 1.05% K-1 的最大相对灵敏度。我们观察到,在特定范围内,光谱色坐标随温度呈线性变化,这表明它有可能用作温度测量手段。此外,利用 I546/I475 的非热耦合水平进行温度测量,可获得令人印象深刻的 8.05% K-1 的最大绝对灵敏度,比仅通过热耦合水平获得的灵敏度高出近 24 倍。合成材料的温度分辨率基本小于 0.3 K,具有很高的热稳定性。因此,Er/Yb:Y3Al5O12 荧光粉有望成为温度传感器应用中的可行候选元件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
Factors Influencing Standard PID Test and Anti-PID Performance of Ga-Doped PERC Mono-Facial Photovoltaic Modules Enhanced Microwave Magnetic and Dielectric Properties of YBiIG Ferrite by Ca-Zr Co-substitution Structural, Optical, and Magnetic Studies of Nickel-Doped β-Ga2O3 Monoclinic and Spinel Polycrystalline Powders Effect of Epoxy Material Viscosity and Gold Wire Configuration on Light-Emitting Diode Encapsulation Process Synthesis and Characterization of Sn-Doped CuO Thin Films for Gas Sensor Toward H2S Gas Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1