Designing Novel Photosensitizers Based on Pyridoquinazolinone and Its TiO2-Adsorbed Complexes with Efficient Photovoltaic Performance in DSSCs: A DFT Insight

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Materials Pub Date : 2024-11-20 DOI:10.1007/s11664-024-11558-z
Aliha Fatima, Muhammad Usman Khan, Junaid Yaqoob, Ghulam Mustafa, Abrar Ul Hassan, Muhammad Ramzan Saeed Ashraf Janjua, Amir Sohail, Rajeh Alotaibi
{"title":"Designing Novel Photosensitizers Based on Pyridoquinazolinone and Its TiO2-Adsorbed Complexes with Efficient Photovoltaic Performance in DSSCs: A DFT Insight","authors":"Aliha Fatima,&nbsp;Muhammad Usman Khan,&nbsp;Junaid Yaqoob,&nbsp;Ghulam Mustafa,&nbsp;Abrar Ul Hassan,&nbsp;Muhammad Ramzan Saeed Ashraf Janjua,&nbsp;Amir Sohail,&nbsp;Rajeh Alotaibi","doi":"10.1007/s11664-024-11558-z","DOIUrl":null,"url":null,"abstract":"<div><p>Developing photosensitizers for dye-sensitized solar cells (DSSCs) is a hot topic in energy conversion and optoelectronic research. To address the rapidly increasing demand for DSSCs, we attempted to construct a series of D–π–A-based (F1–F9) innovative photosensitizers with resonant optoelectronic properties employing bridging core modification. The geometrical, photovoltaic, photophysical, thermodynamic, and electronic properties of the newly developed dyes were explored, and the potential impact of π-linkers (P1–P10) on the DSSC efficiency of the pyridoquinazolinone-based sensitizer was determined. Frontier molecular orbital (FMO), natural bond orbital (NBO), transition density matrix (TDM), electron density difference map (EDDM), molecular electrostatic potential (MEP), and density of states (DOS) analysis was performed, and the excited-state lifetime (<span>\\(\\tau )\\)</span>, open-circuit voltage (<i>V</i><sub>OC</sub>), electron regeneration energy (Δ<i>G</i><sup>reg</sup>), electron injection driving force (Δ<i>G</i><sup>inject</sup>), electronic coupling constants (<i>V</i><sub>RP</sub>), and intramolecular charge transfer (ICT) parameters <i>q</i><sup>CT</sup> (e<sup>−</sup>), D<sup>CT</sup> (Å), <i>H</i> index (Å), ∆ (Å), <i>t</i> index (Å), and μ<sup>CT</sup> (D) for the proposed dyes were computed. The photoelectronic and chemical transfer parameters of the fabricated dyes (F1–F9) near the titania–electrolyte interface (dyes@TiO<sub>2</sub>) proved the better accumulation and recombination of the dyes@TiO<sub>2</sub> model. The lowest unoccupied molecular orbital (LUMO) energies of all proposed dyes were found to be higher than the 4.0 eV of the TiO<sub>2</sub> conduction band, while the highest occupied molecular orbital (HOMO) energies were lower than the electrolytic redox potential energy of −4.80 eV. Therefore, the proposed dyes have an energy advantage for injecting excited electrons effectively, allowing oxidized dyes for efficient regeneration. When compared to standard <i>R</i> values of 5.24 eV, 399.79 nm, and 3.10 eV, the developed compounds (F1–F9) had a smaller energy gap (4.58–5.24 eV), a broader absorption wavelength (362.66–456.95 nm), and a lower transition energy (2.71–3.42 eV). Although all the designed dyes might be used as effective sensitizers for DSSCs, the P4 spacer in F3 is a promising candidate for use in high-performance DSSCs owing to promising photovoltaic properties, including the longer wavelength (456.95 nm), lower excitation energy (2.71 eV), highest light harvesting efficiency (LHE) (0.99), and <i>V</i><sub>RP</sub> (−1.25) with a lower band gap of 4.61 eV. Results proved that the pyridoquinazolinone dyes explored in this work have the potential to improve light-to-power conversion efficiency, <i>J</i><sub>SC</sub>, and <i>V</i><sub>OC</sub> in a DSSC system, and may result in materials with properties that are appropriate for use in DSSCs.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"531 - 555"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11558-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Developing photosensitizers for dye-sensitized solar cells (DSSCs) is a hot topic in energy conversion and optoelectronic research. To address the rapidly increasing demand for DSSCs, we attempted to construct a series of D–π–A-based (F1–F9) innovative photosensitizers with resonant optoelectronic properties employing bridging core modification. The geometrical, photovoltaic, photophysical, thermodynamic, and electronic properties of the newly developed dyes were explored, and the potential impact of π-linkers (P1–P10) on the DSSC efficiency of the pyridoquinazolinone-based sensitizer was determined. Frontier molecular orbital (FMO), natural bond orbital (NBO), transition density matrix (TDM), electron density difference map (EDDM), molecular electrostatic potential (MEP), and density of states (DOS) analysis was performed, and the excited-state lifetime (\(\tau )\), open-circuit voltage (VOC), electron regeneration energy (ΔGreg), electron injection driving force (ΔGinject), electronic coupling constants (VRP), and intramolecular charge transfer (ICT) parameters qCT (e), DCT (Å), H index (Å), ∆ (Å), t index (Å), and μCT (D) for the proposed dyes were computed. The photoelectronic and chemical transfer parameters of the fabricated dyes (F1–F9) near the titania–electrolyte interface (dyes@TiO2) proved the better accumulation and recombination of the dyes@TiO2 model. The lowest unoccupied molecular orbital (LUMO) energies of all proposed dyes were found to be higher than the 4.0 eV of the TiO2 conduction band, while the highest occupied molecular orbital (HOMO) energies were lower than the electrolytic redox potential energy of −4.80 eV. Therefore, the proposed dyes have an energy advantage for injecting excited electrons effectively, allowing oxidized dyes for efficient regeneration. When compared to standard R values of 5.24 eV, 399.79 nm, and 3.10 eV, the developed compounds (F1–F9) had a smaller energy gap (4.58–5.24 eV), a broader absorption wavelength (362.66–456.95 nm), and a lower transition energy (2.71–3.42 eV). Although all the designed dyes might be used as effective sensitizers for DSSCs, the P4 spacer in F3 is a promising candidate for use in high-performance DSSCs owing to promising photovoltaic properties, including the longer wavelength (456.95 nm), lower excitation energy (2.71 eV), highest light harvesting efficiency (LHE) (0.99), and VRP (−1.25) with a lower band gap of 4.61 eV. Results proved that the pyridoquinazolinone dyes explored in this work have the potential to improve light-to-power conversion efficiency, JSC, and VOC in a DSSC system, and may result in materials with properties that are appropriate for use in DSSCs.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于吡啶多喹唑啉酮及其tio2吸附配合物在DSSCs中高效光电性能的新型光敏剂设计:DFT研究
染料敏化太阳能电池光敏剂的开发是能量转换和光电子研究的热点。为了满足对DSSCs快速增长的需求,我们尝试通过桥接核心修饰构建一系列具有谐振光电特性的D - π基(F1-F9)创新光敏剂。考察了新染料的几何、光电、光物理、热力学和电子性能,并测定了π-连接剂(P1-P10)对吡啶多喹唑啉酮类敏化剂DSSC效率的潜在影响。进行了前沿分子轨道(FMO)、自然键轨道(NBO)、跃迁密度矩阵(TDM)、电子密度差图(EDDM)、分子静电势(MEP)和态密度(DOS)分析,以及激发态寿命(\(\tau )\))、开路电压(VOC)、电子再生能(ΔGreg)、电子注入驱动力(ΔGinject)、电子耦合常数(VRP)和分子内电荷转移(ICT)参数qCT (e−)、DCT (Å)、计算所得染料的H指数(Å)、∆指数(Å)、t指数(Å)和μCT (D)。制备的染料(F1-F9)在钛-电解质界面(dyes@TiO2)附近的光电子和化学转移参数证明了dyes@TiO2模型更好的积累和重组。所有染料的最低未占据分子轨道(LUMO)能均高于TiO2导带的4.0 eV,而最高占据分子轨道(HOMO)能均低于电解氧化还原势能(- 4.80 eV)。因此,所提出的染料具有能量优势,可以有效地注入激发态电子,使氧化染料能够有效地再生。与标准R值5.24 eV、399.79 nm和3.10 eV相比,化合物(F1-F9)具有更小的能隙(4.58 ~ 5.24 eV)、更宽的吸收波长(362.66 ~ 456.95 nm)和更低的跃迁能(2.71 ~ 3.42 eV)。虽然所有设计的染料都可以作为DSSCs的有效增敏剂,但F3中的P4间隔层具有良好的光伏特性,包括波长较长(456.95 nm),激发能较低(2.71 eV),最高的光收集效率(LHE)(0.99)和VRP(- 1.25),带隙较低(4.61 eV),因此有望用于高性能DSSCs。结果证明,本研究中所探索的吡多喹唑啉酮染料具有提高DSSC系统光功率转换效率、JSC和VOC的潜力,并可能产生适合DSSC使用的材料。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electronic Materials
Journal of Electronic Materials 工程技术-材料科学:综合
CiteScore
4.10
自引率
4.80%
发文量
693
审稿时长
3.8 months
期刊介绍: The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications. Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field. A journal of The Minerals, Metals & Materials Society.
期刊最新文献
In Situ Growth of Nanorod-Assembled SnWO4 via AACVD for ppb Level Xylene Gas Sensor Polymeric Biosensor Development for Electrochemical Analysis of Tartrazine and Methyl Orange Study on the Vibration Mechanism of the Core Components of an HVDC Filter Capacitor Enhanced Thermal Sensitivity of Graphite Paint-Based Flexible Thermocouple Designing Novel Photosensitizers Based on Pyridoquinazolinone and Its TiO2-Adsorbed Complexes with Efficient Photovoltaic Performance in DSSCs: A DFT Insight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1