{"title":"Role of Silicon in Providing Defence Against Insect Herbivory in Sugarcane Production","authors":"Priya, Rajinder Kumar","doi":"10.1007/s12633-024-03144-z","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon (Si) is essential to the nutritional status of many monocot and dicot plant species, and it aids them in resisting abiotic and biotic challenges in various ways. This article explained the progress in exploring silicon-mediated resistance to sugarcane insect pests, its role in increasing juice quality attributes and cane production, the silicon status of soil and uptake by sugarcane plant, and the mechanisms involved. The aim is to determine the influence of different sources of Si application on the availability of silicon in soil, silicon uptake by plants, silicon effect in minimizing biotic stresses such as defence against sugarcane insect pest herbivory along with its effect on sugarcane yield in terms of juice and other component traits. There are two basic modes of action: enhanced physical or mechanical barriers and biochemical or molecular mechanisms that activate plant defence responses via bitrophic (plant-herbivore) interactions and tritrophic (plant-herbivore-natural enemy) interactions. By integrating the data reported in this research, a comprehensive understanding of the relationship between various sources of silicon treatments, increased sugarcane plant resistance and decreased sugarcane insect pest damage might be attained.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 17","pages":"6041 - 6054"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03144-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon (Si) is essential to the nutritional status of many monocot and dicot plant species, and it aids them in resisting abiotic and biotic challenges in various ways. This article explained the progress in exploring silicon-mediated resistance to sugarcane insect pests, its role in increasing juice quality attributes and cane production, the silicon status of soil and uptake by sugarcane plant, and the mechanisms involved. The aim is to determine the influence of different sources of Si application on the availability of silicon in soil, silicon uptake by plants, silicon effect in minimizing biotic stresses such as defence against sugarcane insect pest herbivory along with its effect on sugarcane yield in terms of juice and other component traits. There are two basic modes of action: enhanced physical or mechanical barriers and biochemical or molecular mechanisms that activate plant defence responses via bitrophic (plant-herbivore) interactions and tritrophic (plant-herbivore-natural enemy) interactions. By integrating the data reported in this research, a comprehensive understanding of the relationship between various sources of silicon treatments, increased sugarcane plant resistance and decreased sugarcane insect pest damage might be attained.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.